Silver Nanoparticles Supported on Ordered Mesoporous Carbon for Formaldehyde Electrooxidation

摘要:

文章预览

Metal nanocatalysts, as the anodic materials, have become increasingly important in fuel cells due to their unique physical and chemical properties. Here we report the ordered mesoporous carbon (CMK-3) supported silver nanocatalysts have been prepared through the wet chemical reduction by using the reduction of formaldehyde. The electrochemical properties of the Ag/CMK-3 nanocatalysts for formaldehyde oxidation are studied by cyclic voltammograms (CV) and chronoamperometric curves (i-t) in alkaline aqueous solutions. The results show that the peak current density (from CV) of the Ag/CMK-3 electrode is 112 mA cm-2, above 2 times higher than that of Ag/XC-72 at the same Ag loading (14.15 μg cm-2). Furthermore, the i-t curves demonstrate that the Ag/CMK-3 nanocatalysts are efficient and stable electrocatalysts for anodic oxidation of formaldehyde in alkaline solutions. Our results indicate that the application potential of Ag/CMK-3 nanocatalysts with the improved electrocatalytic activity has far reaching effects on fuel cells and sensors.

信息:

期刊:

编辑:

Wu Fan

页数:

508-513

DOI:

10.4028/www.scientific.net/AMM.110-116.508

引用:

L. B. Kong et al., "Silver Nanoparticles Supported on Ordered Mesoporous Carbon for Formaldehyde Electrooxidation", Applied Mechanics and Materials, Vols. 110-116, pp. 508-513, 2012

上线时间:

October 2011

输出:

价格:

$35.00

[1] M. Hasanzadeh, B. Khalizadeh, N. Shadjou, G. Karim-Nezhad, L. Saghatforoush, I. Kazeman, M.H. Abnosi, A New Kinetic-Mechanistic Approach to Elucidate Formaldehyde Electrooxidation on Copper Electrode, Electroanalysis, vol. 22, Nov. 2009, pp.168-176.

DOI: 10.1002/elan.200900294

[2] E.A. Batista, T. Iwasita, Adsorbed Intermediates of Formaldehyde Oxidation and Their Role in the Reaction Mechanism, Langmuir, vol. 22, Jul. 2006, p.7912–7916, doi: 10. 1021/la061182z.

DOI: 10.1021/la061182z

[3] Z. Wang, Z.Z. Zhu, J. Shi, H.L. Li, Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film, Appl. Surf. Sci, vol. 253, Sept. 2007, pp.8811-8817.

DOI: 10.1016/j.apsusc.2007.03.005

[4] G.Y. Cao, D.J. Guo. H.L. Li, Electrocatalytic oxidation of formaldehyde on palladium nanoparticles supported on multi-walled carbon nanotubes, J. Power Sources, vol. 162, Nov. 2006, pp.1094-1098, doi: 10. 1016/j. jpowsour. 2006. 07. 057.

DOI: 10.1016/j.jpowsour.2006.07.057

[5] B.R. Sathe, D.B. Shinde, V.K. Pillai, Preparation and Characterization of Rhodium Nanostructures through the Evolution of Microgalvanic Cells and Their Enhanced Electrocatalytic Activity for Formaldehyde Oxidation, J. Phys. Chem. C., vol. 113, May. 2009, pp: 9616-9622, DOI: 10. 1021/jp901055v.

DOI: 10.1021/jp901055v

[6] J.L. Geng, Y.P. Bi, G.X. Lu, Morphology-dependent activity of silver nanostructures towards the electro-oxidation of formaldehyde, Electrochem. Commun., vol. 11, Jun. 2009, pp: 1255-1258, doi: 10. 1016/j. elecom. 2009. 04. 014.

DOI: 10.1016/j.elecom.2009.04.014

[7] P. Ferrin, M. Mavrikakis, Structure Sensitivity of Methanol Electrooxidation on Transition Metals, J. Am. Chem. Soc., vol. 131, Sept. 2009, pp: 14381–14389, doi: 10. 1021/ja904010u.

DOI: 10.1021/ja904010u

[8] C. Bianchini, P.K. Shen. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells, Chem. Rev., vol. 109, Jul. 2009, pp: 4183-4206, doi: 10. 1021/cr9000995.

DOI: 10.1021/cr9000995

[9] I. Lee, F. Delbecq, R. Morales, M.A. Albiter, F. Zaera. Tuning selectivity in catalysis by controlling particle shape, Nature Mater, vol 8, Jan. 2009, pp: 132-138, doi: 10. 1038/nmat2371.

DOI: 10.1038/nmat2371

[10] A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis, Microporous Mesoporous Mater, vol. 77, Jan 20, pp: 1-45, doi: 10. 1016/j. micromeso. 2004. 06. 030.

DOI: 10.1016/j.micromeso.2004.06.030

[11] H. Chang, S.H. Joo, C. Pak, Synthesis and characterization of mesoporous carbon for fuel cell applications, J. Mater. Chem., vol. 17, May. 2007, pp: 3078-3088, doi: 10. 1039/B700389G.

[12] J.L. Shi, Z.L. Hua, L.X. Zhang, Nanocomposites from ordered mesoporous materials, J. Mater. Chem., vol. 14, Jan 2004, pp: 795-806, doi: 10. 1039/B315861F.

[13] R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered Mesoporous Carbons, Adv. Mater., vol. 13, May. 2001, pp: 677-681, doi: 10. 1002/1521-4095.

DOI: 10.1002/1521-4095(200105)13:9<677::aid-adma677>3.3.co;2-3

[14] H.J. Shin, R. Ryoo, M. Kruk, M. Jaroniec, Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication, Chem. Commun., Feb. 2001, pp.349-350, doi: 10. 1039/b009762o.

DOI: 10.1039/b009762o

[15] L.B. Kong, H. Li, J. Zhang; Y.C. Luo, L. Kang, Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation, Applied Surface Science, vol. 256, Apr. 2010, pp.6688-6693.

DOI: 10.1016/j.apsusc.2010.04.071

[16] E.N. Coker, W.A. Steen, J. T, Miller, A.J. Kropf, J.E. Miller, Nanostructured Pt/C electrocatalysts with high platinum dispersions through zeolite-templating, Microporous Mesoporous Mater, vol. 101 Apr 2007, pp.440-444.

DOI: 10.1016/j.micromeso.2006.12.022

[17] S.Z. Zhang, W.H. Ni, X.S. Kou, M.H. Yeung, L.D. Sun, J.F. Wang, C.H. Yan, Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers, Adv. Funct. Mater., vol. 17, Sept. 2007, pp: 3258-3266, doi: 10. 1002/adfm. 200700366.

DOI: 10.1002/adfm.200700366

[18] L. Majari Kasmaee, F. Gobal, A preliminary study of the electro-oxidation of l-ascorbic acid on polycrystalline silver in alkaline solution, J. Power Sources., vol. 195, Jan. 2010, pp: 165-169, doi: 10. 1016/j. jpowsour. 2009. 06. 095.

DOI: 10.1016/j.jpowsour.2009.06.095

为了查看相关信息, 需 Login.