作者: Wen Hui Bai, Bin Xiang Sun

摘要: In order to investigate flexural behavior of simply-supported beam using recycled coarse aggregate concrete, the difference of the component normal section stress distortion performance and failure characteristic between the recycled concrete beam and the normal concrete beam is researched. The approaches of testing the flexural behavior of 6 recycled course aggregate beams with the same section size, different replacement ratio of recycled coarse aggregate (0%, 50%, 70% and 100%) and different percentage reinforcement (0.68%, 0.89% and 1.13%). Based on the experimental the following conclusions are draw. There are also 4 phases of elasticity, cracking, yield and ultimate during the stress course of recycled concrete beam component normal section stress; the average strain measured on cross-section obliges to the plane section assumption; the characteristics of stress distortion and destruction of recycled concrete beam are basically the same as those of the normal concrete beam. Under same conditions, the cracking moment and the ultimate flexural carrying capability of recycled concrete beam is almost the same as those of normal concrete beam. The deformation of recycled concrete beam is larger than concrete beam. The conclusion of the paper is that it is still feasible to calculate the ultimate bending moment, cracking moment, and the biggest crack width of recycled concrete beam according to the formula in China Concrete Structure Design Code, but the deflection formula needs to be adjusted.

543

摘要: This paper mainly studies the deflection under short-term loading of recycled course aggregate reinforced concrete beam is calculated by using of the formula of short-dated rigidity in code for design of concrete structures. According to testing the flexural performance of 6 recycled course aggregate beams with the same section size, different replacement ratio of recycled coarse aggregate of 0%, 50%, 70%, 100% respectively and different percentage reinforcement of 0.68%, 0.89%, 1.13% respectively, analyzes relation between deflection and replacement ratio of recycled coarse aggregate, deflection and percentage reinforcement, compare measured value and calculated value using of current codes and make statistical analysis this data . By regressing and analyzing the experimental data from literature, supplied short-dated rigidity modified formula of recycled course aggregate beam. The calculation results are in good agreement with the experimental data. The formula of short-dated rigidity can accurately calculate deflection under short-term loading of recycled course aggregate reinforced concrete beam, and can be referenced in engineering practice and correlative regulations.

1443

作者: Kao Zhong Zhao, Feng Wang, Xiao Feng Bian

摘要: The concrete-filled glass fiber reinforced gypsum wall panel is a kind of panel that the inside cavums of the glass fiber hollow gypsum panel are filled with concrete, which can be used as the bearing wall of a building. The influences of eccentricity distance and height to thickness ratio on the bearing capacity of the compression wall panels were studied, and the failure mechanism and bearing capacity of compression wall panels were gained through the experiments of twenty-seven(nine groups) axial compression wall panel specimens and twenty-seven(nine groups) eccentric compression wall panel specimens. The analysis results indicate that the bearing capacity of compression wall panels is obviously affected by the eccentricity distance and height to thickness ratio, and there is a linear relation between bearing capacity and eccentricity distance. The bearing capacity calculation formula of the concrete-filled glass fiber reinforced gypsum wall panel is obtained by regression analysis, which provides reliable gist for structural design of concrete-filled glass fiber reinforced gypsum wall panel buildings.

16

作者: Zhao Hua Du, Tong Hao, Li Xin Liu

摘要: This paper presents the test results of 6 reinforced concrete beams with recycled aggregates of construction waste under flexure, the beams were made of two strength grade concrete of and with different recycled aggregate replacement rate. The results indicate: the ultimate bearing capacity of recycled concrete beams with natural aggregate concrete beams are almost the same, and can meet the requirements of chinese code; The cracking resistance of the reinforced recycled concrete beams is slightly less than that of the beams with natural aggregates, the influence of recycled aggregate replacement rate to cracking resistance is not obvious. Recycled concrete beam crack load the calculated value is greater than the measured value, should carry out the theoretical value adjustment. Reinforced concrete beams is one of concrete structures, its the most common and most important component, Study of flexural property of reinforced concrete for recycled concrete structure component in the popularization and application to have the important significance [. This paper presents the test results of 6 reinforced concrete beams with recycled aggregates of construction waste under flexure, the beams were made of two strength grade concrete of C30 and C40 and with different recycled aggregate replacement rate of 0%, 50% and 70%. These results may be as a reference for the application of the concrete with recycled aggregates of construction waste in engineering [2,3,.

601