Titania Nanotubes Prepared by Templating Needle-Like Calcium Carbonate



Titania nanotubes were successfully synthesized by a simple procedure with needle-like CaCO3 as inorganic templates at a room temperature in nonaqueous system. Through the hydrolysis of tetrabutoxytitanium (TBOT), titania crystal nucleus were deposited on the CaCO3 nanoparticles due to heterogeneous nucleation, followed by aggregation condensation on the surface of needle-like CaCO3 cores and removal of CaCO3 to produce hollow titania nanotubes. Its morphological and structural properties were characterized by TEM, SEM, and XRD, respectively. The nanotubes have a uniform tubular hollow structure with one or two big openings ends, the length of about 2.0 μm, the average inner diameters of 100-200 nm, respectively, and a wall thickness of approximately 40 nm. The phase formed was anatase after calcinations at 723 K for 2 h and nanotubes with hollow structure remained their original shapes, and the BET surface area of as-synthesized titania nanotubes was 243.45 m2/g, and decreased to 144.76 m2/g after calcinations





Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang




L. D. Gao and J. F. Chen, "Titania Nanotubes Prepared by Templating Needle-Like Calcium Carbonate", Advanced Materials Research, Vols. 11-12, pp. 539-542, 2006


February 2006




[1] S. Iijima: Nature Vol. 354 (1991), p.56.

[2] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino�and K. Niihara: Langmuir Vol. 14�(1998), p.3160.

[3] L.Q. Mai, W. Chen, Q. Xu, Q.Y. Zhu, C.H. Han�and J.F. Peng: Solid State Commun. Vol. 126 (2003), p.541.

[4] X. Wang�and Y. Li: J. Am. Chem. Soc. Vol. 124 (2002), p.2880.

[5] H. Nakamura and Y. Matsui: J. Am. Chem. Soc. Vol. 117 (1995), p.2651. M. Zhang, Y. Bando and K. Wada: J. Mater. Res. Vol. 15 (2000), �p.387.

[6] K. Fujishima�and I. Yamada: J. Appl. Phys. Vol. 65 (1989), p.619.

[7] Z.X. Lu, L. Zhou, Z.L. Zhang, W.L. Shi, Z.X. Xie, H.Y. Xie, D.W. Pang�and P. Shen: Langmuir Vol. 19 (2003), p.8765.

[8] K. Vinodgopal, S. Hotchandani and P.V. Kamat: J. Phys. Chem. Vol. 97 (1993), p.9040.

[9] K.S. Mayya, D.I. Gittins, A.M. Dibaj and F. Caruso: Nano Lett. Vol. 1 (2001), p.727.

[10] S.O. Obare, N.R. Jana�and C.J. Murphy: Nano Lett. Vol. 1 (2001), p.601.

[11] J. Hwang, B. Min, J.S. Lee, K. Kim, K. Cho, M.Y. Sung, M.S. Lee�and S. Kim: Nano Lett. Vol. 16 (2004), p.422.

[12] F. Miyaji, S.A. Davis, J.P.H. Charmant�and S. Mann: Chem. Mater. Vol. 11 (1999), p.3021.

[13] S.N. Mann, S.L. Burkett, S.A. Davis, C.E. Fowler, N.H. Mendelson, S.D. Sims, D. Walsh�and N.T. Whilton: Chem. Mater. Vol. 9 (1997), p.2300.

[14] H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima: J. Mater. Chem. Vol. 9�(1999), p.2971.

[15] Z.J. Liang, A.S. Susha, A. Yu�and F. Caruso: Adv. Mater. Vol. 15�(2003), p.1849.

[16] Q.H. Zhang, L. Gao, J. Sun�and S. Zheng: Chem. Lett. Vol. 31�(2002), p.226.

[17] M. Wang, H.K. Zou, L. Shao and J.F. Chen: Powder Tech. Vol. 142 (2004), p.166.

[18] P.V. Braun�and S.I. Stupp: Mater. Res. Bull. Vol. 34�(1999), p.463.

[19] D.A. Ward�and W.I. Ko: Ind. Eng. Chem. Res. Vol. 34 (1995), p.421.