A Study of Mechanical Properties of Human Femoral Heads Using Nanoindentation



Human bone fracture associated with osteoporosis was hypothesized to be related to the alteration of mechanical properties in bones. In this work, cortical and trabecular bones from human femoral heads were studied. Bone samples of eight female and four male patients, with ages varying from 37 to 93 years, were collected from total hip replacement surgery. Reduced modulus (Er) and hardness (H) of osteons, interstitial lamellae and trabeculae were characterized by nanoindentation. The results showed both the reduced modulus and hardness of the interstitial lamellae were significant higher than those of osteons and trabeculae. Though there was no significant difference in microstructures in the Group A (age < 60 years) and B (age > 60 years), the Group B bones demonstrated to be stiffer.




Yunn-Shiuan Liao, Chao-Chang A. Chen, Choung-Lii Chao and Pei-Lum Tso




C. L. Lin et al., "A Study of Mechanical Properties of Human Femoral Heads Using Nanoindentation", Advanced Materials Research, Vols. 126-128, pp. 957-962, 2010


August 2010




[1] Delmas, P. D. and M. Fraser: World Health organization Vol. 77 (1999), pp.416-422.

[2] Bauer, J. S. and T. M. Link: European Journal of Radiology Vol. 71 (2009), pp.440-449.

[3] Bouxsein, M. L.: Clinical cornerstone Vol. 5 (2003), p. s13-s21.

[4] Ammann P. and Rizzoli R.: Osteoporosis International Vol. 1(2003), pp.13-18.

[5] Hoffler, C. E., X. E. Guo, et al.: Journal of Biomechanical Engineering Vol. 127 (2005), pp.1046-1053.

[6] Ermanno Bonucci in: Mechanical Testing of Bone and the Bone-Implant Interface, edited by Yuehuei H. An and Robert A. Draughn Publications/ CRC Press LLC, USA (2000).

DOI: https://doi.org/10.1201/9781420073560

[7] Ruppel, M. E., L. M. Miller, et al.: Osteoporosis International Vol. 19 (2008), pp.1251-1265.

[8] Fan Z., Smith P. A., Harris G. F., Rauch F., and Bajorunaite R.: Connective Tissue Research, Vol. 48 (2007), pp.70-75.

[9] Gleeson J. P., in: Composition and mechanical properties of osteoarthritic subchondral trabeculae tibial bone, University of Dublin, 2006, pp.8-17.

[10] Fan Z., Swadener J. G., Rho J. Y., Roy M. E., and Pharr G. M.: Journal of Orthopaedic Research Vol. 20 (2002), pp.806-810.

[11] Bouxsein, M. L.: Clinical cornerstone Vol. 5 (2003), p. s13-s21.

[12] Roy M. E., Rho J. -Y., Tsui T. Y., Evans N. D., and Pharr G. M.: Journal of Biomedical Materials Research Vol. 44 (1998), pp.191-107.

[13] R. D. Bloebsum, G. A. Lundeen, J. E. Shea, and E. L. Whitaker: The Anatomical Record. Part A, Discoveries in molecular, cellular, and evolutionary biology Vol. 281(2004), pp.1296-1302.

[14] Hengsberger, S., A. Kulik, et al.: European Cells and Materials Vol. 1 (2001), pp.12-17.

[15] S. Hengsberger, A. Kulik, and P. Zysset: Bone Vol. 30 (2002), pp.178-184.

[16] Pharr, G. M., W. C. Oliver, et al.: Journal of Materials Research Vol. 7 (1992), pp.613-617.

[17] Rho, J. Y., P. Zioupos, et al.: Journal of Biomechanics Vol. 35 (2002), pp.189-198.

[18] P. K. Zysset, X. E. Guo, E. Hoffler, K. E. Moore, and S. A. Goldstein: Journal of Biomechanics Vol. 32 (1999), pp.1005-1012.

[19] Rho, J. -Y. and G. M. Pharr: Journal of materials science: Materials in medicine Vol. 10 (1999), pp.485-488.

[20] Y. Wu, C. Bergot, E. Jolivet, L. Zhou, J. -D. Laredo, and V. Bousson: Bone Vol. 45 (2009), pp.207-212.