Influences of Surface Chemistry on Dehydrogenation Kinetics of Ammonia Borane in Porous Carbon Scaffold

摘要:

文章预览

Ammonia borane (AB) with high gravimetric hydrogen capacity is of great interest for storing hydrogen in solid form which is an important issue in the growing field of hydrogen technology. In this work the effects of surface chemistry on dehydrogenation kinetics of carbon cryogel (CC) – ammonia borane nanocomposites have been studied. Boron-modified, nitrogen-modified, and boron-nitrogen- modified CCs were used as scaffold for AB and dehydrogenation kinetics of CC-ABs was studied by means of differential scanning calorimetry (DSC) at multiple heating rates. The results demonstrated that AB incorporated inside the mesopores of CC modified with nitrogen and boron possesses lower activation energy with enhanced kinetics of dehydrogenation due to catalytic effects as compared to AB in unmodified CC under otherwise the same or similar conditions. In addition, the lowest activation energy was observed for boron-modified CC-AB that could be attributed to the destabilization of AB by surface interactions with B2O3 that may accelerate the dehydrogenation process.

信息:

期刊:

编辑:

Jin-An Wang, Guozhong Cao and José Manuel Domínguez

页数:

19-28

引用:

S. Sepehri et al., "Influences of Surface Chemistry on Dehydrogenation Kinetics of Ammonia Borane in Porous Carbon Scaffold", Advanced Materials Research, Vol. 132, pp. 19-28, 2010

上线时间:

August 2010

输出:

价格:

$38.00

[1] Fakioğlu, E.; Yurum, Y.; Veziroğlu, T.N. Int. J Hydrogen Energy 2004, 29, 1371.

[2] Seayad, A. M.; Antonelli, D. M. Adv. Mater. 2004, 16, 765.

[3] Baitalow, F.; Baumann, J.; Wolf, G.; Jaenicke-RoBler, K.; Leitner, G. Thermochm. Acta. 2002, 391, 159.

[4] Baumann, J.; Baitalow, F.; Wolf, G. Thermochim. Acta. 2005, 430, 9.

[5] Stowe, A.; Shaw, W.; Linehan, J.; Schmid, B.; Autrey, T. Phys. Chem. Chem. Phys. 2007, 9, 1831.

[6] F. H. Stephens, V. Pons, R. T. Baker, Dalton Trans. 2007, 2613.

[7] Hoon, C. F.; Reynhardt, E. C. J. Phys. C: Solid State Phys. 1983, 16, 6129.

[8] Wolf, G.; Baumann, J.; Baitalow, F.; Hoffmann, F. P. Thermochim. Acta 2000, 343, 19.

[9] Hu, M. G.; Geanangel, R. A.; Wendlandt, W. W. Thermochim. Acta 1978, 23, 249.

[10] Sit, V.; Geanangel, R. A.; Wendlandt, W. W. Thermochim. Acta 1987, 113, 379.

[11] Benedetto, S. D.; Carewska, M.; Cento, C.; Gislon, P.; Pasquali, M.; Scaccia, S.; Prosini, P. P. Thermochim. Acta 2006, 441, 184.

DOI: https://doi.org/10.1016/j.tca.2005.12.004

[12] Gutowska, A.; Li, L.; Shin, Y.; Wang, C.M.; Li, X.S.; Linehan, J.C.; Smith, R.S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed. 2005, 44, 3578.

DOI: https://doi.org/10.1002/anie.200462602

[13] Vajo, J. J.; Olson, G. L. Scr. Mater. 2007, 56, 829.

[14] Pekala, R. W.; Alviso, C. T.; Kong, F.M.; Hulsey, S.S. J. Non-Cryst. Solids 1992, 145, 90.

[15] Al-Muhtaseb, S.A.; Ritter, J.A. Adv. Mater. 2003, 15, 101.

[16] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.

[17] Feaver, A.; Sepehri, S.; Shamberger, P.; Stowe, A.; Autrey, T.; Cao, G.Z. J. Phys. Chem. B. 2007, 111, 7469.

[18] S. Sepehri, B. B. García and G. Z. Cao, J. Mater. Chem. 2008, 18, 4034.

[19] S. Sepehri, B. B. García and G. Z. Cao, Eur. J. Inorg. Chem. 2009, 5, 599.

[20] Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Carbon 1999, 37, (2049).

[21] Pekala, R.W. J. Mater. Sci. 1989, 24, 3221.

[22] Feaver, A.; Cao, G. Z. Carbon 2006, 44, 590.

[23] P. V. Samant, F. Goncalves, M. A. Freitas, M. R. Pereira, J. L. Figueiredo, Carbon, 2004, 42, 1321.

[24] E. A. Il'inchik, V. V. Volkov, L. N. Mazalov, J. Struct. Chem. 2005, 46, 523.

[25] S. Sepehri, A. M. Feaver, W. J. Shaw, C. J. Howard, Q. Zhang, T. Autrey, G. Z. Cao, J. Phys. Chem. B, 2007, 111, 14285.

[26] H. E. Kissinger, Anal. Chem. 1957, 11, 1702.