A Stretched Carbon Nanotube with a High-Density of Topological Defect

摘要:

Article Preview

We have developed a theoretical method to obtain a single-walled carbon nanotube (SWCNT) with a high density of topological defects. Carbon nanotubes (CNTs) sustain elastic elongation up to 15-30% at low temperature because of the sufficiently high barrier of bond rotations. A large number of topological defects are activated simultaneously and widely distributed over the entire tube wall after heating the stretched tube to an elevated temperature. This is driven by the internal energy of the strained carbon nanotubes. The manner in which topological defects are distributed is affected by the initial strain and the heating temperature. Nanotubes with a large number of topological defects achieve the elongation without breaking.

信息:

期刊:

编辑:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao

页数:

2225-2228

DOI:

10.4028/www.scientific.net/AMR.236-238.2225

引用:

F. Y. Meng et al., "A Stretched Carbon Nanotube with a High-Density of Topological Defect", Advanced Materials Research, Vols. 236-238, pp. 2225-2228, 2011

上线时间:

May 2011

输出:

价格:

$35.00

为了查看相关信息, 需 Login.

为了查看相关信息, 需 Login.