Synthesis and Characterization of Ultrafine Nanocrystalline Ti-Al Nanoparticles



Ti-Al nanoparticles and have been synthesized by the flow-levitation (FL) method. The morphology, crystal structure and chemical composition of Ti-Al nanoparticles obtained were investigated by transmission electron microscopy, X-ray diffraction and induction-coupled plasma spectroscopy. Results showed that the average grain size of these nanoparticles is about 30 nm, and it can be controlled availably by altering procedure parameters. The structure of powder is mainly double phase Ti-Al particulate composite. In addition, there are certain corresponding relation between the compositions of evaporate source master material and phase composition of alloy compound nanoparticle. The expected nanoparticle, which is mainly composition of nanocrystalline intermetallic compound, can be obtained through changing the compositions of evaporating source mastermaterial.




Pengcheng Wang, Liqun Ai, Yungang Li, Xiaoming Sang and Jinglong Bu




S. J. Chen et al., "Synthesis and Characterization of Ultrafine Nanocrystalline Ti-Al Nanoparticles", Advanced Materials Research, Vols. 295-297, pp. 672-676, 2011


July 2011




[1] Y.W. Kim: JOM, Vol. 41(1989), p.24.

[2] Y. -W. Kim, & D.M. Dimiduk: JOM, Vol. 43(8) (1991), p.40.

[3] J.C.B. Eddoes, W. Wallace, & M.C. de Malherbe: Mater, and Manufacturing Procasses, Vol. 7(4)(1992) , p.527.

[4] D.J. Ququette, & N. S. Stoloff: Key Engineering Materials, Vol. 1993, 77-78, p.289.

[5] R. Bohn, T. Haubold, R. Birringer, H. Gleiter: Scripta Metal. Mater. Vol. 25 (1991), p.811.

[6] H.A. Calderon, et al. Materials Science and Engineering. Vol. (2002), A329–331, p.196–205.

[7] W.E. Buhro, J.A. Haber, B.E. Waller, T.J. Trentteller: Am. Chem. Soc. Symp. Ser. Vol. 1995, 210, p.20.

[8] G.M. Chow, T. Ambrose, J. Xiao, F. Kaatz, A. Ervin: Nanostruct. Mater. Vol. 1993, 2, p.131.

[9] J.A. Haber, J.L. Crane, W.E. Buhro, C.A. Frey, S.M.L. Sastry, J.J. Balbach, M.S. Conradi: Adv. Mater. Vol. 1996, 81, p.63.

[10] C.M. Li, H. Lei, Y.J. Tang, J.S. Luo, W. Liu, Z.M. Chen: Nanotechnology, Vol. 2004, 15, p.1866−1869.

[11] G. Chu, Z.Q. Xiong, W. Liu, J.J. Wei: The Chinese Journal of Nonferrous Metals, Vol. 2007, 4, p.623−628.

[12] G. Chu, W. Liu, T.Z. Yang, Y.J. Tang: Trans. Nonferrous Met. Soc. china. Vol . 2009, 19, pp.394-398.

[13] W. Liu, T.Z. Yang, G. Chu, J.S. Luo, Y.J. Tang:. Trans. Nonferrous Met. Soc. china. Vol. 2007, 17, pp.1347-1351.

[14] J.J. Wei, D. Wu, Y.J. Tang, W.D. Wu, H. L Lei: Atomic Energy Science and Technology. Vol . 2008, 42(11), pp.965-968 (In Chinese).

[15] J.J. Wei, Y.J. Tang, W.D. Wu, S. Wei, C.Y. Li, X.D. Yang: Vol . 2003, 159(9) , pp.869-872(In Chinese).

[16] Y.J. Tang, J.J. Wei, C.Y. Li, W.D. Wu, C.Y. Wang: Acta Physica Sinica, Vol . 2003, 52 (9), pp.2331-2336 (In Chinese).

[17] T. Novoselova, S. Malinov, W. Sha, A. Zhecheva: Materials Science and Engineering. Vol . 2004, 371, pp.103-112.

[18] A. Penaloza, C.R. Houska: Vol, 1983, pp.54-59.