The Effects of Hot Isostatic Pressing Conditions on the Microstructure of Beta-Gamma Titanium Aluminide Powder Alloys

摘要:

文章预览

The effects of hot isostatic pressing temperature and cooling rate on the microstructure of two powder metallurgy beta-gamma titanium aluminide alloys with nominal compositions TiAl 4Nb 3Mn (G1) and TiAl-2Nb-2Mo (G2) are investigated. Particular attention is placed on the volume fraction of the beta phase, which is known to improve the hot workability. The alloys are consolidated by hot isostatic pressing at 1200 °C, 1250 °C, and 1300 °C, and cooled at rates between 3.0 °C/min and 17.5 °C/min. The volume fraction of beta phase in both alloys was unaffected by the change in cooling rates. The volume fraction of the beta phase in G2 decreased linearly from ~9.5 vol.% to ~3.5 vol.% with increasing HIP temperature from 1200 °C to 1300 °C.

信息:

期刊:

编辑:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

页数:

325-330

引用:

D. Laurin et al., "The Effects of Hot Isostatic Pressing Conditions on the Microstructure of Beta-Gamma Titanium Aluminide Powder Alloys", Advanced Materials Research, Vols. 89-91, pp. 325-330, 2010

上线时间:

January 2010

输出:

价格:

$38.00

[1] X. Wu: Intermetallics 14 (2006), p.1114.

[2] T. Tetsui, K. Shindo, S. Kobayashi, M Takeyama: Scr. Mater. 47 (2002), p.399.

[3] J.S. Kim, Y.H. Lee, Y. -W. Kim, C.S. Lee: Mater. Sci. Forum Vol. 539-543 (2007), p.1531.

[4] F. Appel, M. Oehring, J.D.H. Paul, Ch. Klinkerberg, T. Carneiro: Intermetalics 12 (2004), p.791.

[5] T. Tetsui, K. Shindo, S. Kobayashi, M Takeyama: Intermetallics 11 (2003), p.299.

[6] T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, M. Takeyama: Intermetallics 13 (2005), p.971.

[7] X.J. Xu, L.H. Xu, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen: Intermetallics 13 (2005), p.337.

[8] E. Loria: Intermetallics 9 (2001), p.997.

[9] F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, J.D.H. Paul: Adv. Eng. Mater. Vol. 2 (2000), p.699.

DOI: https://doi.org/10.1002/1527-2648(200011)2:11<699::aid-adem699>3.3.co;2-a

[10] X.J. Xu, J.P. Lin, Y.L. Wang, J.F. Gao, Z. Lin, G.L. Chen: Alloys and Compounds 414 (2006), p.175.

[11] U. Habel, B. J. McTiernnan: Intermetallics 12 (2004), p.63.

[12] D.Y. Seo, J. Beddoes, L. Zhao, G.A. Botton: Mater. Sci. Eng. (2002) Vol 329-331, p.810.

[13] H. Clemens, H.F. Chladil, W. Wallgram, G.A. Zickler, R. Gerling, K. -D. Liss, S. Kremmer, V. Güther, W. Smarsly: Intermetallics 16 (2008), p.827.

DOI: https://doi.org/10.1016/j.intermet.2008.03.008

[14] H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, A. Bartels: Adv. Eng. Mater. Vol. 10 (2008), p.707.

[15] Y. -W. Kim, Advances in gamma alloy technology, presented at ASM/TMS Spring Symposium, Niskayuna, NY, (2005).