Thermodynamics Analysis of Unsteady MHD Mixed Convection with Slip and Thermal Radiation over a Permeable Surface

摘要:

文章预览

This paper discusses the thermodynamics irreversibility in an unsteady hydromagnetic mixed convective flow of an electrically conducting optically dense fluid over a permeable vertical surface under the combined influence of thermal radiation, velocity slip, temperature jump, buoyancy force, viscous dissipation, Joule heating and magnetic field. The governing partial differential equations are reduced to ordinary differential equations by using similarity variable. A local similarity solution is obtained numerically using shooting technique coupled with Runge-Kutta Fehlberg integration method. The influence of various thermophysical parameters on velocity and temperature profiles, skin friction, Nusselt number, entropy generation rate and Bejan number are presented graphically and discussed quantitatively. It is found that velocity slip, surface injection and temperature jump can successfully reduce entropy generation rate in the presence of an applied magnetic field. A comparison of numerical solution is made with the exact solution under a special case scenario and excellent agreement is found.

信息:

期刊:

编辑:

Dr. Stanislav Kolisnychenko

页数:

29-46

引用:

A. Muhammad and O. D. Makinde, "Thermodynamics Analysis of Unsteady MHD Mixed Convection with Slip and Thermal Radiation over a Permeable Surface", Defect and Diffusion Forum, Vol. 374, pp. 29-46, 2017

上线时间:

April 2017

输出:

价格:

$38.00

* - 通讯作者

[1] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuators B Chem. 130 (2008) 917–942.

DOI: https://doi.org/10.1016/j.snb.2007.10.064

[2] L. Capretto, W. Cheng, M. Hill, X. Zhang, Micromixing within microfluidic devices. Top. Curr. Chem., 304 (2011) 27–68.

DOI: https://doi.org/10.1007/128_2011_150

[3] C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery. Int. J. Heat Mass Trans., 51 (2008) 5590–5597.

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.043

[4] D. C. Tretheway, C. D. Meinhart, A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys. Fluids, 16 (2004) 1509–1515.

DOI: https://doi.org/10.1063/1.1669400

[5] E. M. Sparrow, E. R. Eckert, W. J. Minkowycz, Transpiration cooling in a magnetohydrodynamic stagnation-point flow. Appl Sci Res A 11 (1962) 125–147.

DOI: https://doi.org/10.1007/bf03184718

[6] S. Rosseland, Theoretical astrophysics. Oxford University, New York, NY, USA, (1936).

[7] O. D. Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chemical Engineering Communications, 195 (12) (2008).

DOI: https://doi.org/10.1080/00986440802115549

[8] O. D. Makinde, Free-convection flow with thermal radiation and mass transfer past a moving vertical porous plate. International Communications in Heat and Mass transfer, 32 (2005) 1411-1419.

DOI: https://doi.org/10.1016/j.icheatmasstransfer.2005.07.005

[9] K. R. Cramer, S. I. Pai, Magnetofluid dynamics for engineers and applied physicists. McGraw–Hill, New York, (1973).

[10] O. D. Makinde, O. O. Onyejekwe, A numerical study of MHD generalized Couette flow and heat transfer with variable viscosity and electrical conductivity. Journal of Magnetism and Magnetic Materials, 323 (2011) 2757–2763.

DOI: https://doi.org/10.1016/j.jmmm.2011.05.040

[11] O. D. Makinde, T. Chinyoka, Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection. Journal of Mechanical Science and Technology, 27 (5) (2013) 1557-1568.

DOI: https://doi.org/10.1007/s12206-013-0221-9

[12] O. D. Makinde, W. A. Khan, J. R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016) 595–604.

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.050

[13] S. Mukhopadhyay, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Eng. J., 4(3) (2013) 485-491.

DOI: https://doi.org/10.1016/j.asej.2012.10.007

[14] P. R. Sharma, G. Singh, Effects of variable thermal conductivity, viscous dissipation on Steady MHD natural convection flow of low Prandtl fluid on an inclined porous plate with Ohmic heating. Meccanica, 45 (2010) 237- 247.

DOI: https://doi.org/10.1007/s11012-009-9240-0

[15] Y. J. Kim, Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. International Journal of Engineering Science, 38 (2000) 833-845.

DOI: https://doi.org/10.1016/s0020-7225(99)00063-4

[16] K. Bhattacharyya, G. C. Layek, Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing. Chem. Eng. Commun., 197 (2010) 1527-1540.

DOI: https://doi.org/10.1080/00986445.2010.485012

[17] L. Zheng, J. Niu, X. Zhang, Y. Gao, MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump. Math. Comp. Model., 56 (2012), 133-144.

DOI: https://doi.org/10.1016/j.mcm.2011.11.080

[18] N. Kishan, S. Jagadha, Influence of thermophoresis on heat and mass transfer under non-Darcy MHD mixed convection along a vertical flat plate embedded in a porous medium in the presence of radiation. Thermophys. Aeromech. 23(1) (2016) 97-108.

DOI: https://doi.org/10.1134/s0869864316010108

[19] D. Hunegnaw, N. Kishan, Scaling group analysis on MHD effects on heat transfer near a stagnation point on a linearly stretching sheet with variable viscosity and thermal conductivity, viscous dissipation and heat source/sink. Theoretical and Applied Mechanics, 42(2) (2015).

DOI: https://doi.org/10.2298/tam1502111d

[20] D. Hunegnaw, N. Kishan, Unsteady MHD flow of heat and mass transfer of nanofluids over stretching sheet with a non-uniform heat/source/sink considering viscous dissipation and chemical reaction. International Journal of Engineering Research in Afrika, 14 (2015).

DOI: https://doi.org/10.4028/www.scientific.net/jera.14.1

[21] P. Kavitha, N. Kishan, MHD flow of a non-Newtonian power-law fluid over a stretching sheet with thermal radiation, viscous dissipation and slip boundary conditions. Acta Technica, 59(4) (2014) 355–376.

[22] E. H. Lieb, J. Yngvason, The physics and mathematics of the second law of thermodynamics. Physics Reports, 310 (1999) 1–96.

DOI: https://doi.org/10.1016/s0370-1573(98)00082-9

[23] A. Bejan, A., A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer, 101 (1979) 718-725.

DOI: https://doi.org/10.1115/1.3451063

[24] A. Bejan, A., Tsatsaronis, G., Moran, M., Thermal design and optimization, Wiley, New York, USA, (1996).

[25] O. D. Makinde, Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. Int. J. Exergy, 10 (2) (2012) 142-154.

DOI: https://doi.org/10.1504/ijex.2012.045862

[26] S. DasAffiliated withDepartment of Mathematics, University of Gour Banga Email author, S. Chakraborty, R. N. Jana, O. D. Makinde, Affiliated withFaculty of Military Science, Stellenbosch University Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Applied Mathematics and Mechanics, 36 (12) (2015).

DOI: https://doi.org/10.1007/s10483-015-2003-6

[27] G. Ibáñez, S. Cuevas, Entropy generation minimization of a MHD flow in a microchannel. Energy, 35 (2010) 4149–4155.

DOI: https://doi.org/10.1016/j.energy.2010.06.035

[28] L. C. Woods, Thermodynamics of fluid systems. Oxford University Press, Oxford, UK, (1975).

[29] T. Chinyoka, O. D. Makinde, Analysis of entropy generation rate in an unsteady porous channel flow with Navier slip and convective cooling. Entropy, 15 (2013) 2081-(2099).

DOI: https://doi.org/10.3390/e15062081

[30] S. Mahmud, R. A. Fraser, Flow, thermal and entropy generation characteristic inside a porous channel with viscous dissipation. Int. J. Therm. Sci. 44 (2005), 21-32.

DOI: https://doi.org/10.1016/j.ijthermalsci.2004.05.001

[31] O. D. Makinde, O. A. Beg, On inherent irreversibility in a reactive hydromagnetic channel flow. Journal of Thermal Science 19 (1) (2010), 72-79, (2010).

DOI: https://doi.org/10.1007/s11630-010-0072-y

[32] O. D. Makinde, Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. International Journal of Exergy, 10 (2) (2012) 142-154.

DOI: https://doi.org/10.1504/ijex.2012.045862

[33] M. H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Reducing entropy generation in MHD fluid flow over open parallel microchannels embedded in a micropatterned permeable surface. Entropy, 15(2013) 4822-4843.

DOI: https://doi.org/10.3390/e15114822

[34] T.Y. Na, Computational methods in engineering boundary value problem. Academic Press, (1979).

从Crossref获取数据。
这可能需要一些时间来加载。