Thermal Decomposition of Supersaturated Ti1-xAlxN Solid Solution Synthesized by High-Energy Milling



Supersaturated titanium-aluminum nitride (Ti1-xAlxN) is a very attractive material for a wide range of applications due to its high oxidation and wear resistance accompanied by high strength, hardness, thermal conductivity and thermal shock resistance. Currently, its applications are limited to coatings obtained by physical or chemical deposition. Bulk materials based on Ti1-xAlxN may be fabricated by powder metallurgy approach using powders synthesized by high-energy ball milling (HEBM), which composition corresponds to supersaturated Ti1-xAlxN solid solution. In the present study, thermal stability of the supersaturated Ti1-xAlxN solid solution was investigated. According to the quasi-binary TiN-AlN phase diagram, constructed using density functional theory (DFT) analysis, the concentration ranges, where decomposition takes place through spinodal decomposition or through nucleation and growth, were determined. Experimental study on thermal stability of solid Ti1-xAlxN solution powder was conducted by means of differential scanning calorimetry (DSC), Brunauer-Emmited-Teller (BET) and XRD. The results indicated that spinodal decomposition of Ti1-xAlxN starts at 800°C, while at temperature higher than 1300°C regular decomposition (nucleation and growth) is occur.




Prof. Graeme E. Murch, Irina Belova and Prof. Andreas Öchsner




M. Radune et al., "Thermal Decomposition of Supersaturated Ti1-xAlxN Solid Solution Synthesized by High-Energy Milling", Diffusion Foundations, Vol. 9, pp. 82-89, 2016


October 2016




[1] U. Wahlström, L. Hultman, J. -E. Sundgren, F. Adibi, I. Petrov, J.E. Greene: Thin Solid Films Vol. 235 (1993), p.62.

[2] L.A. Donohue, I.J. Smith, W. -D. Münz, I. Petrov, J. E. Greene: Surf. Coatings. Technol. Vol. 226 1997 226 94-95.

[3] O. Knotek, Bohmer M., Leyendecker T.: On structure and properties of sputtered Ti and Al based hard compound films,. J. Vac. Sci. Technol. A 1986 14 2695-2700.


[4] W. -D. Münz: J. Vac. Sci. Technol. A Vol. 4 (1986), p.2717.

[5] S. PalDey, S.C. Deevi: Mater Sci Engng A Vol. 342 (2003), p.58.

[6] A. Kimura, H. Hasegawa, K. Yamada and T. Suzuki: J. Mater. Sci. Lett. Vol. 19 (2000) p.601.

[7] P.H. Mayrhofer, A. Horling, L. Karlsson, J. Sjolen, T. Larsson, C. Mitterer and L. Hultman: Appl. Phys. Lett. Vol. 83 (2000) p. (2049).

[8] M. Radune, M. Zinigrad, S. Kalabukhov, M. Sokol, V. I. Chumanov and N. Frage: Ceram. Inter. 2016 in press.

[9] H. Borodianska, T. Ludvinskaya, Y. Sakka, I. Uvarova and O. Vasilkiv: Scripta Materialia Vol. 61 (2009) p.1020.


[10] M. Barsom, M. Ali and T. El-Raghy: Metall. Mater. Trans. A Vol. 31 (2000) p.1857.

[11] J. Jordan, N. Thadhani: APS Shock Compression of Condensed Matter Meeting Abstracts Vol. 1 (2001) p.1097.

[12] M. Yan, Y. Chen, B. Mei, J. Zhu: Trans. Nonferrous Met. Soc. China Vol. 18 (2008) p.82.

[13] M. Yan, B. Mei, J. Zhu, C. Tian, P. Wang: Ceramic Int. Vol. 18 (2008) p.1439.

[14] Y. Tanaka, T.M. Gur, M. Kelly, S.B. Hagstrom, T. Ikeda, K. Wakihira, H. Satoh: Thin Solid Films Vol. 228 (1993) p.238.

[15] T. Suzuki, Y. Makino, M. Samandi, S. Miyake: J. Mater. Sci. Vol. 35(16) (2000) p.4193.

[16] O. Knotek, M. Bohmer and T. Leyendecker: J. Vac. Sci. Technol. A Vol. 4(6) (1986) p.2695.

[17] A. Horling, L. Hultman, M. Oden, J. Sjolen and L. Karlsson: J. Vac. Sci. Technol. A Vol. 20 (2002) p.1815.

[18] R. Cremer, M. Witthaut, A. Vonrichthofen, D. Neuschutz: Fresenius' journal of analytical chemistry Vol. 361(6-7) (1998) p.639.

[19] H. Ohnuma, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota and T. Aizawa: Surf. Coat. Technol. Vol. 177-178 (2004) p.623.

[20] Y. Ogino, M. Miki, T. Yamasaki and T. Inuma: Preparation of ultrafine-grained TiN and (Ti, Al)N powders by mechanical alloying (Trans. Tech. Publications, Switzerland 1992).


[21] M. Miki, T. Yamasaki, Y. Ogino: Mater. Trans. Vol. 34 (1993) p.952.

[25] U.K. Bhaskar, S. Bid, S.K. Pradhan: Scr. Mater. Vol. 509 (2011) p.620.

[26] R. Du, H. Okamura, R. Wanatabe, A. Kawasaki: Mater. Trans. JIM. Vol. 45 (2004) p.2669.

[27] W. Kim, J. W. Lima, H.S. Oh, I.J. Shon: Ceram. Int. Vol. 40 (2014) p.2511.

[28] W. Kohn, P. Vashishta: NY: Plenum (1983) p.79.

[29] W. Kohn, A.D. Becke, R.G. Parr: J. Phys. Chem. Vol. 100 (1996) p.12974.

[30] K. Schwarz, P. Blaha: Comput. Mater. Sci. Vol. 28(2) (2003) p.259.

[31] S. Cotteneier: Density functional theory and the family of (L)APW-methods: a step-by-step introduction, edited by K.U. Leuven Instituut voor Kern-en Stralingsfysica, Belgium , (2002).

[32] J. Desclaux: Comp. Phys. Commun. Vol. 9 (1969) p.3107.

[33] D.D. Koelling, B.N. Harmon: J. Phys. C: Sol. St. Phys. Vol. 10 (1977) p.3107.

[34] F.D. Murnaghan: Proceedings of the National Academy of Sciences of the United States of America Vol. 30(9) (1944) p.244.

[35] H. Holleck: Surf. Coat. Technol. Vol. 36 (1988) p.151.

[36] Zhang F., Kaczmarek W.A., Lu L., Lai M.O.: Formation of Al-TiN metal matrix composite via mechanochemical,. Rote Scripta mater. 2000 43 1097-1102.


[37] M.S. El-Eskandarany: Mechanical alloying for fabrication of advanced engineering materials, William Andrew Publishing (2001).

[38] C. Suryanarayana and M.G. Norton: X-Ray Diffraction: A Practical Approach, Plenum Publishing Corporation (1998).