Ambient Blooming Behavior and Mechanical Properties of Vulcanized Natural Rubber Loaded with Non-Ionic Surfactants



This study investigated the ambient blooming behavior of additives and mechanical properties of vulcanized natural rubber (VNR) loaded with non-ionic surfactants coco diethanolamide (CDEA) and glycerol monostearate (GMS). Taguchi method and analysis of variance (ANOVA) were used to determine the significant main effects of additives on bloom rates and mechanical properties of VNR. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectra of VNR surface confirm the presence of chemical functional groups of stearic acid, paraffin wax, used oil, CDEA, and GMS. The amount of bloom (MB) versus square root of time (t1/2) plot yields two linear regions corresponding to distinct bloom rates which suggest that the blooming behavior of additives follows a non-Fickian mechanism. High loadings of stearic acid, used oil, and paraffin wax increase the bloom rates due to migration of excess unreacted additives to the surface of VNR. Also, additives easily diffuse out of the VNR due to softening of the rubber matrix. High loadings of sulfur and CDEA consistently decrease the bloom rates because of the increase in crosslink density and increase in filler dispersion, making it difficult for additives to bloom out of rubber matrix. High loading of sulfur significantly improves the tensile and compression moduli of VNR. Meanwhile, high loadings of ZnO and used oil significantly decrease the tensile and compression moduli of VNR. Sulfur as a crosslinking agent increases the crosslink density which resulted to increase mechanical properties. Excess used oil and zinc stearate, reaction product of ZnO and stearic acid, on the VNR matrix resulted to rubber matrix softening and decrease in mechanical properties.




Prof. Graeme E. Murch, Irina Belova and Prof. Andreas Öchsner




D. E. O. Santiago et al., "Ambient Blooming Behavior and Mechanical Properties of Vulcanized Natural Rubber Loaded with Non-Ionic Surfactants", Diffusion Foundations, Vol. 9, pp. 90-99, 2016


October 2016




[1] K. Pal, R. Rajasekar, D. J. Kang, Z. X. Zhang, S. K. Pal, C. K. Das, J. K. Kim, Effect of fillers on natural rubber/high styrene rubber blends with nano silica: morphology and wear, Mater. Design 31 (2010) 677-686.


[2] C. Sangwichien, P. Sumanatrakool, O. Patarapaiboolchai, Effect of filler loading on curing characteristics and mechanical properties of thermoplastic vulcanizate, Chiang Mai J Sci 35(2008) 141-149.

[3] A. A. Shah, F. Hasan, Z. Shah, N. Kanwal, S. Zeb, Biodegration of natural and synthetic rubbers: a review, Int. Biodeterior. Biodegration 83 (2013) 145-157.


[4] R. Torregrosa- Coque, S. Alvarez-Garcia, J. M. Martin- Martinez, Migration of paraffin wax to sulfur vulcanized styrene-butadiene rubber (SBR) surface: effect of temperature, J. Adhes. Sci. Technol. 26 (2012) 813-826.

[5] J. Arabit, B. Pajarito, Effect of ingredient loading on surface migration of additives in a surfactant-loaded natural rubber vulcanizate, Adv. Mat. Res. 1125 (2015) 64–68.


[6] H. M. Lim, M. Misran, Effect of sodium dodecyl sulphate, Brij 35 on natural rubber latex properties, J. Rubb. Res. 16 (2013) 162-168.

[7] H. Aguilar-Bolados, M. Yazdani-Pedram, J. Brasero, M. A. Lopez-Manchado, Influence of the surfactant nature on the occurrence of self-assembly between rubber particles and thermally reduced graphite oxide during the preparation of natural rubber nanocomposites, J. Nanomater. 2015 (2015).


[8] J. S. Dick, How to improve rubber compounds: 1800 experimental ideas for problem solving, Munich: Carl Hanser Verlag (2014).


[9] M. Akiba, A.S. Hashim, Vulcanization and crosslinking in elastomers, Prog. Polym. Sci. 22 (1997) 475-521.

[10] G. Milani, E. Leroy, F. Milani and R. Deterre, Mechanistic modeling of reversion phenomenon in sulphur cured natural rubber vulcanization kinetics, Polym. Test. 32 (2013) 1052-1063.


[11] B. Jurkowski and B. Jurkowska, On the mechanism of sulfur behavior in rubber compounds, J. Macromol. Sci-Phys. 37 (1998) 135-142.

[12] A. S. Aprem, K. Joseph, T. Mathew, V. Altstaedt, S. Thomas, Studies on accelerated sulphur vulcanization of natural rubber using 1-phenyl-2, 4-dithiobiuret/ tertiarybutyl benzothiazole sulphenamide, Eur. Polym. J. 39 (2003) 1451-1460.


[13] A. J. Chan, K. Steenkeste, A. Canette, M. Eloy, D. Brosson, F. Gaboriaud, M. P. Fontaine-Aupart, Natural rubber-filler interactions: what are the parameters?, Langmuir 31 (2015) 12437-12446.


[14] S. H. Nah, A. G. Thomas, M. Rubber, Migration and blooming of waxes to the surface of rubber vulcanizates, J Polym Sci Pol Phys. 18 (1980) 511–521.


[15] S. S. Choi, Migration behaviors of wax to surface in rubber vulcanizates. , J. Appl. Polym. Sci 73 (1999) 2587-2593.


[16] P. Raju, V. Nandanan, K. N. K. Sunil, A study on the use of coconut oil as plasticiser in natural rubber compounds, J. Rubb. Res. 10 (2007) 1-16.

[17] F. Saeed, A. Ansarifar, R. J. Ellis, Y. Haile‐Meskel, Assessing effect of the reagglomeration and migration of chemical curatives on the mechanical properties of natural rubber vulcanizate, Adv. Polym. Techn., 32 (2013) 153-165.


[18] M. Sugiura, M. Horii, H. Hayashi, M. Sasayama, Application of sepiolite to prevent bleeding and blooming for EPDM rubber composition, Appl Clay Sci. 11(1996) 89-97.


[19] U. Q. Yasin, D. Kamarun, C. M. S. Said, A. Samsuri, Effect of compounding ingredients and crosslink concentration on blooming rate of natural rubber compounds, Adv. Mat. Res. 1134 (2015) 50-55.


[20] B. B. Pajarito, N. V. Berba, J. K. C. Parto, and R. A. V. Yabut, Effect of zeolite treatment on the blooming behavior of paraffin wax in natural rubber composites, Science Diliman 28 (2016) 34-53.

[21] Y. Hoei, A Fickian approach for wax blooming from vulcanized rubber, Rubber Chem. Technol., 83 (2010) 46-64.


[22] B. Pajarito, C.A. De Torres, M. Maningding, Effect of ingredient loading on surface migration kinetics of additives in vulcanized natural rubber compounds, Sci. Diliman 26 (2014) 21-39.

[23] R. K. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons (2001).

[24] Z. R. Lazic, Design of Experiments in Chemical Engineering: A Practical Guide, WILEY-VCH Verlag GMbH &Co. KGaA, Weinheim (2004).

[25] R. Guo, A.G. Talma, R.N. Datta, W.K. Dierkes, J.W.M. Noordermeer, Solubility study of curatives in various rubbers, Eur. Polym. J. 44 (2008) 3890–3893.


[26] J.E. Aguirre, Processing aids for natural and synthetic rubber, Technical Processing, Inc., U.S. Patent 4, 534, 799 (1985).