Numerical Evaluation of Biomechanical Stresses in Dental Bridges Supported by Dental Implants

摘要:

文章预览

The number of supporting dental implants is an important criterion for the surgical outcome of dental bridge fixation, which has considerable impact on biomechanical load transfer characteristics. Excessive stress at the bone–implant interface by masticatory loading may result in implant failure. The aim of this study was to evaluate the impact of the number of implants supporting the dental bridge on stress in neighboring tissues around the implants. Results of the study will provide useful information on appropriate surgical techniques for dental bridge fixation. In this study, osseointegrated smooth cylindrical dental implants of same diameter and length were numerically analyzed, using three-dimensional bone–implant models. The effect of the number of supporting implants on biomechanical stability of dental bridge was examined, using two, three and four supporting implants. All materials were assumed to be linearly elastic and isotropic. Masticatory load was applied in coron-apical direction on the external part of dental bridge. Finite Element (FE) analyses were run to solve for von Mises stress. Maximum von Mises stresses were located in the cervical line of cortical bone around dental implants. Peak von Mises stress values decreased with an increase in the number of implants that support the dental bridge. Results of this study demonstrate the importance of using the correct number of supporting implants to for dental bridge fixation.

信息:

页数:

43-54

引用:

A. Boukhlif et al., "Numerical Evaluation of Biomechanical Stresses in Dental Bridges Supported by Dental Implants", Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 37, pp. 43-54, 2018

上线时间:

June 2018

输出:

价格:

$38.00

* - 通讯作者

[1] E.O. Almeida, E.P. Rocha, A.C. Freitas Júnior, R.B. Anchieta, R .Poveda, N. Gupta, P.G. Coelho, Tilted and short implants supporting fixed prosthesis in an atrophic maxilla: A 3D-FEA biomechanical evaluation. Clin Implant Dent Relat Res. 17 (2015).

DOI: https://doi.org/10.1111/cid.12129

[2] G.A.A. Rasouli, A. Geramy, S. Yaghobee, A. Khorsand, H. Yousefifakhr, A. Rokn, A. Soolari, Evaluation of Platform Switching on Crestal Bone Stress in Tapered and Cylindirical İmplants: A Finite Element Analyses. J Int Acad Periodontol. 17 (2015).

[3] M.I. Fanuscu, H.V. Vu, B. Poncelet, Implant biomechanics in grafted sinus: A finite element analysis. J Oral Implantol. 30 (2004) 59-68.

DOI: https://doi.org/10.1563/0.674.1

[4] H. Fischer, M. Weber, R. Marx. Lifetime Prediction of All-ceramic Bridges by Computational Methods. J Dent Res. 82 (2003) 238-242.

DOI: https://doi.org/10.1177/154405910308200317

[5] S.M.M. Rezaei, H. Heidarifar, F.F. Arezodar, A. Azary, S. Moktarykhoee, Influence of Connector Width on the Stress Distribution of Posterior Bridges under Loading. J Dent. 8 (2011) 67-74.

[6] M.D.S. Lanza, P.I. Seraidarian, W.C. Jansen, M.D. Lanza, Stress analysis of a fixed implant supported denture by the finite element method (FEM) when varying the number of teeth used as abutments. J Appl Oral Sci. 19 (2011) 655-661.

DOI: https://doi.org/10.1590/s1678-77572011000600019

[7] R.H. Mathog, V. Toma, L Clayman, S. Wolf, Nonunion of the mandible: An analysis of contributing factors. J. Oral Maxillofac. Surg. 58 (2000) 746-752.

DOI: https://doi.org/10.1053/joms.2000.7258

[8] P. Magne, Virtual prototyping of adhesively restored, endodontically treated molars. J Prosthet Dent.103 (2010) 343-351.

DOI: https://doi.org/10.1016/s0022-3913(10)60074-1

[9] B.T. Rafferty, M.N. Janal, R.A. Zavanelli, N.R. Silva, E.D. Rekow, V.P. Thompson, P.G. Coelhoa, Design features of a three-dimensional molar crown and related maximum principal stress. A finite element model study. Dent Mater J. 26 (2010) 156-163.

DOI: https://doi.org/10.1016/j.dental.2009.09.009

[10] K. Plengsombut, J.D. Brewer, E.A. Monaco Jr., E.L. Davis, Effect of two connector designs on the fracture resistance of all-ceramic core materials for fixed dental prostheses. J Prosthet Dent. 101 (2009) 166-173.

DOI: https://doi.org/10.1016/s0022-3913(09)60022-6

[11] W.S. Oh, K.J. Anusavice, Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures. J Prosthet Dent. 87 (2002) 536-542.

DOI: https://doi.org/10.1067/mpr.2002.123850

[12] J.B. Quinn, G.D. Quinn, J.R. Kelly, S.S. Scherrer, Fractographic analyses of three ceramic whole crown restoration failures. Dent Mater J, 21 (2005) 920-929.

DOI: https://doi.org/10.1016/j.dental.2005.01.006

[13] F.E. Lambert, H.P. Weber, S.M. Susarla, U.C. Belserand, and G. O. Gallucci, Descriptive analysis of implant and prosthodontic survival rates with fixed implant-supported rehabilitations in the edentulous maxilla. J. Periodontol. 80 (2009).

DOI: https://doi.org/10.1902/jop.2009.090109

[14] W. Moreira, C. Hermann, J.T. Pereira, J.A. Balbinoti, and R.Tiossi. A three dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants. Eur J Dent. 7(2013) 484-491.

DOI: https://doi.org/10.4103/1305-7456.120642

[15] N. Sykaras, A. M. Iacopino, V. A. Marker, R. G. Triplett, and R. D. Woody, Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 15 (2000) 675-690.

[16] L. Kong, K. Hu, D. Li, Y. Song, J. Yang, Z. Wu, B. Liu, Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 23 (2008) 65-74.

[17] A. N. Natali, P. G. Pavan, and A. L. Ruggero, Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res. 17 (2006) 67-74.

DOI: https://doi.org/10.1111/j.1600-0501.2005.01162.x

[18] M.R. Dimashieh, A.R. Al-Shammery, Long-term survival of sleeve-designed fixed partial dentures: A clinical report. J Prosthet Dent. 84 (2000) 591-593.

DOI: https://doi.org/10.1067/mpr.2000.111495

[19] S. Ukon, H. Moroi, K. Okimoto, M. Fujita, M. Ishikawa, Y. Terada, H. Satoh, Influence of different elastic moduli of dowel and core on stress distribution in root. Dent Mater J. 19 (2000) 50.

DOI: https://doi.org/10.4012/dmj.19.50

[20] M. Sevimay, A. Usumez, G. Eskitascioglu. The influence of various occlusal materials on stresses transferred to implant supported prostheses and supporting bone: A finite element analysis. J Biomed Mater Res. 73(2005) 140-147.

DOI: https://doi.org/10.1002/jbm.b.30191