Modified ITAT Model for Data Retention in Nanocrystals Based Flash Memory Gate Stack



This work applies combination of Direct Tunneling model and BSIM4 based ITAT model to explain the leakage of electrons from charged nanocrystals to p-type silicon substrate in data retention condition, for an ultra-thin tunnel oxide, low voltage programmable silicon nanocrystal based flash gate stack. Basic expressions of these models are modified to incorporate the nanocrystals related charge leakage in idle mode. The concept is supported by simulating these models and comparing them with the experimental data. Transition of electrons is considered as a result of Direct Tunneling and their trapping de-trapping via water related hydrogen traps. However, it is found that modified ITAT mechanism is the dominant one. Flat-band voltage shift profile fits accurately with the model with an extrapolated 10 years device lifetime without memory closure. 3 nm thick tunnel oxide and 100 nm sized nanocrystal fabrication with Electron Beam Lithography are main features of the devices.






R. Dhavse et al., "Modified ITAT Model for Data Retention in Nanocrystals Based Flash Memory Gate Stack", Journal of Nano Research, Vol. 45, pp. 1-11, 2017


January 2017




* - 通讯作者

[1] R. S. Scott, N. A. Dumin, T. W. Hughes, D. J. Dumin, B. T. Moore, Properties of High-Voltage Stress Generated Traps in Thin Silicon, IEEE Trans. Elect. Dev. 43 (1996)1133-1143.


[2] FarhanRana, SandipTiwari, J. J. Welser, Kinetic Modelling of Electron Tunneling Processes in Quantum Dots Coupled to Field-Effect Transistors AP J. Superlattices Microstructures. 23 (1998) 757-770.


[3] C. MonzioCompagnoni, D. Ielmini, A. S. Spinellit, A. L. Lacaita, C. Previtali, C. Gerardi, Study of Data Retention for Nanocrystal Flash Memories, Proc. IEEE 41st Annual lnt. Symp. on Reliability Physics. (2003) 507-512.


[4] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe, M. M. Heyns, Determination of Tunnelling Parameters in Ultra-thin Oxide Layer Poly-Si/SiO2/Si Structures, Elsevier J. Solid-State Electronics. 38 (1995)1465-1471.


[5] Jonghwan Lee, GijsBosman, Keith R. Green, D. Ladwig, Model and Analysis of Gate Leakage Current inUltrathin Nitrided Oxide MOSFETs, IEEE Trans. Electron. Dev. 49 (2002)1232-1241.


[6] Dong-Won Kim, Taehoon Kim, Sanjay K. Banerjee, Memory Characterization of SiGe Quantum Dot Flash Memories With HfO2/SiO2 Tunneling Dielectrics, IEEE Trans. Electron. Dev. 50 (2003)1823-1829.


[7] F. Jimenez-Molinos, F. Gamiz, A. Palma, P. Cartujo, J. A. Lo, Direct and Trap-Assisted Elastic Tunneling through Ultrathin Gate Oxides, J. Appl. Phy. 91 (2002)5116-5124.


[8] Tuo-Hung Hou, Jaegoo Lee, Jonathan T Shaw, Edwin C Kan, Flash Memory Scaling: From Material Selection to Performance Improvement (2007) www. researchgate. net.


[9] Barbara De Salvo, CosimoGerardi, Rob van Schaijk, Salvatore A. Lombardo, DomenicoCorso, Cristina Plantamura, Stella Serafino, Giuseppe Ammendola, Michiel van Duuren, Pierre Goarin, Wan Yuet Mei, Kees van der Jeugd, Thierry Baron, Marc Gély, Pierre Mur, Simon Deleonibus, Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Nanocrystals, SONOS), IEEE Trans. Dev. Mat. Rel. 4 (2004).


[10] International Technology Roadmap for Semiconductors (ITRS) (2013) http: /www. itrs. net.

[11] Robin Degraeve, Guido Groeseneken, Rudi Bellens, Jean Luc Ogier, MichelDepas, Philippe J. Roussel, Herman E. Maes, New Insights in the Relation between Electron Trap Generation and theStatistical Properties of Oxide Breakdown, IEEE Trans. Electron Dev. 45 (1998).


[12] E. H. Nicollean and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley-Inderscience Publication, (1982).

[13] W. R. Thurber, R. L. Mattis, Y. M. Liu, and J. J. Filliben: National Bureau of Standards Special Publication (1981) 400-464.

[14] W. C. Lee, C. Hu, Modeling Gate and Substrate Currents due to Conduction-and-Valence-Band Electron and Hole Tunneling, IEEE Dig. VLSI Tech. (2000) 198-199.