Tin Selenide Quantum Dots Electrochemical Biotransducer for the Determination of Indinavir - A Protease Inhibitor Anti-Retroviral Drug



Biocompatibility of tin selenide quantum dots was achieved by the incorporation of 3-mercaptopropionic acid (3-MPA) as a capping agent, which also improved the stability and the solubility of the material. The UV-Vis spectrophotometric analysis of the quantum dots revealed a broad absorption band at ~ 330 nm (with a corresponding band gap, Eg, value of 3.75 eV), which is within the range of values expected for quantum dots materials. The 3-mercaptopropionic acid-capped tin selenide (3-MPA-SnSe) quantum dots were used to develop an electrochemical biosensor for indinavir, which is a protease inhibitor antiretroviral (ARV) drug. The biosensor was prepared by the self-assembly of L-cysteine on a gold electrode that was functionalised with 3-MPA-SnSe quantum dots, followed by cross-linking with cytochrome P450-3A4 (CYP3A4) using 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). The electrocatalytic properties of the biosensor included a characteristic cyclic voltammetric reduction peak at-380 mV, which was used to detect the response of the biosensor to indinavir. The sensor performance parameters included response time and limit of detection (LOD) values of 11 s and 3.22 pg/mL, respectively. The test concentration range studied (0.014 – 0.066 ng/mL) gave a linear calibration plot for indinavir, and it was lower than the physiological plasma concentration index (i.e. maximum plasma concentrations, Cmax,) of indinavir (5 - 15 ng/mL) normally observed 8 h after intake. This indicates that the biosensor can be very useful in the case of ultra-rapid metabolisers where very low Cmax values are expected






U. Feleni et al., "Tin Selenide Quantum Dots Electrochemical Biotransducer for the Determination of Indinavir - A Protease Inhibitor Anti-Retroviral Drug", Journal of Nano Research, Vol. 45, pp. 12-24, 2017


January 2017




[1] J.S. Lewis II, C.M. Terriff, D.R. Coulson, M.W. Garrison, Protease Inhibitor: A therapeutic breakthrough for the treatment of patients with human immunodeficiency virus, Clin Ther 19 (1997) 187-214.

DOI: https://doi.org/10.1016/s0149-2918(97)80110-5

[2] M.L. Foisy, Sommadossi Jean-Pierre, Rapid quantification of indinavir in human plasma by high-performance liquid chromatography with ultraviolet detection, J. Chromatogr B 721 (1999) 239-247.

DOI: https://doi.org/10.1016/s0378-4347(98)00451-4

[3] R.M. Gulick, J.W. Mellors, D. Havlir, J.J. Eron, C. Gonzalez, D. McMahon, D.D. Richman, F.T. Valentine, L. Jonas, A. Meibohm, E.A. Emini, J.A. Chodakewitz, Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy, N Engl J Med 337 (1997).

DOI: https://doi.org/10.1056/nejm199709113371102

[4] R.M. Gulick, J.W. Mellors, D. Havlir, J. J Eron, C. Gonzalez, D. Mcmahon, L. Jonas, A. Meibohm, D. Holder, W.A. Schleif, J.H. Condra, E.A. Emini, R. Isaacs, J.A. Chodakewitz, D.D. Richman, Simultaneous vs sequential initiation of therapy with indinavir, zidovudine, and lamivudine for HIV-1 infection, J Am Med Assoc 280 (1998).

DOI: https://doi.org/10.1001/jama.280.1.35

[5] L. Zhong and K.C. Yeh, Determination of cerebrospinal fluid and plasma by solid-phase extraction and high-performance liquid chromatography with column switching, J Chromatogr B 734 (1999) 63-71.

DOI: https://doi.org/10.1016/s0378-4347(99)00342-4

[6] H. Yang, J. Nkeze, R.Y. Zhao, Effects of HIV-1 protease on cellular functions and their potential applications in the antiretroviral therapy, Cell and Bioscience 2 (2012) 1-8.

DOI: https://doi.org/10.1186/2045-3701-2-32

[7] V. Tozzi, Pharmacogenetics of antiretrovirals, Antiviral Res 85 (2010) 190-200.

[8] B. Autran, G. Carcelain, T.S. Li, C. Blanc, D. Mathez, R. Tubiana, C. Katlama, P. Debre, J. Leibowitch, Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease, Science 277 (1997).

DOI: https://doi.org/10.1126/science.277.5322.112

[9] M.M. Lederman, E. Connick, A. Landay, D.R. Kuritzkes, J. Spritzer, M. St Clair, B.L. Kotzin, L. Fox, M.H. Chiozzi, J.M. Leonard, F. Rousseau, M. Wade, J.D. Roe, A. Martinez, H. Kessler, Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDs clinical trials group protocol, J Infect Dis 178 (1998).

DOI: https://doi.org/10.1086/515591

[10] J.H. Lin, Human immunodeficiency virus protease inhibitors from drug design to clinical studies, Adv Drug Delivery Rev 27 (1997) 215-233.

DOI: https://doi.org/10.1016/s0169-409x(97)00044-6

[11] M. Chiba, M. Hensleigh, J.A. Nishime, S. Balani, J.H. Lin, Role of cytochrome P450 3A4 in human metabolism of MK-639, a potent human immunodeficiency virus protease inhibitor, Drug Metab Dispos 25 (1997) 1219-1222.

[12] R. Zuber, E. Anzenbacherova, P. Anzenbacher, Cytochrome P450 and experimental models of drug metabolism, J Cell Mol Med 6 (2002) 189-198.

DOI: https://doi.org/10.1111/j.1582-4934.2002.tb00186.x

[13] E. Woolf, H.M. Haddix, B. Matuszewski, Determination of an in vivo metabolite of a human immunodeficiency virus protease inhibitor in human plasma by high-perfomance liquid chromatography with tandem mass spectrometry, J Chromatogr A 762 (1997).

DOI: https://doi.org/10.1016/s0021-9673(96)00702-9

[14] V. Michaud, T. Bar-Magen, J. Turgeon, D. Flockhart, Z. Desta, M.A. Wainberg, The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and deposition, Pharmacol Rev 64 (2012).

DOI: https://doi.org/10.1124/pr.111.005553

[15] J Porkona, L. Machala, P. Rezacova, J. Konvalinka, Current and novel inhibitors of HIV protease, Viruses 1 (2009) 1209-1239.

DOI: https://doi.org/10.3390/v1031209

[16] D.G. de Requena, O. Gallego, C. De Mendoza, A. Corral, I. Jiménez-nácher, V. Soriano, Indinavir plasma concentrations and resistance mutations in patients experiencing early virological failure, AIDS Res Hum Retroviruses 19 (2003) 457-459.

DOI: https://doi.org/10.1089/088922203766774496

[17] J. Ford, S. Khoo, D.J. Back, The intercellular pharmacology of antiretroviral protease inhibitors, J Antimicrob Chemother 54 (2004) 982-990.

[18] T.R. Cressy, M. Lallemant, Pharmacogenetics of antiretroviral drugs for the treatment of HIV-infected patients: an update, Inf Genet Evol 7 (2007) 333-342.

[19] R.P.G. van Heeswijk, A.L. Veldkamp, J.W. Mulder, P.L. Meenhorst, J.M.A. Lange, J.H. Beijnen, R.M. Hoetelsman, Combination of protease inhibitors for the treatment of HIV-1 infected patients: a review of pharmacokinetics and clinical experience. Antivir Ther 6 (2002).

[20] Y. Yoon, P. Westerhoff, S.A. Snyder, HPLC-fluorescence detection and adsorption of bisphenol A, 17ß-estradiol, and 17α-ethynyl estradiol on powder activated carbon, Water Res 1 (2000) 157-163.

DOI: https://doi.org/10.1016/s0043-1354(03)00239-2

[21] J.A. Russell, R.K. Malcom, K. Campbell, High-performance liquid chromatographic determination of 17ß-estradiol and 17ß-estradiol-3-acetate solubilities and diffusion coefficients in silicone elastomeric intravaginal rings, J Chromatogr B: Biomed Sci Appl 744 (2000).

DOI: https://doi.org/10.1016/s0378-4347(00)00248-6

[22] N. Bistolas, U. Wollenberger, C. Jung, F.W. Scheller, Cytochrome P450 biosensors-a review, Biosens Bioelectron 20 (2005) 2408-2423.

DOI: https://doi.org/10.1016/j.bios.2004.11.023

[23] A. Fantuzzi, M. Fairhead, G. Gilardi, Direct electrochemistry of immobilized Human Cytochrome P450 2E1, J Am Chem Soc 126 (2004) 5040-5041.

DOI: https://doi.org/10.1021/ja049855s

[24] N.A. Okereke, A.J. Ekpunobi, Structure and optical properties of chemically deposited tin selenide, Chalcogenide Lett 7 (2010) 531-538.

[25] S.C. Singh, S.K. Mishra, R.K. Srivastava, R. Gopal, Optical properties of selenium quantum dots produced with laser irradiation of water suspended Se nanoparticles, J Phys Chem C 115 (2010) 17374-17384.

DOI: https://doi.org/10.1021/jp105037w

[26] X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, S. Dai, SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors, Chem Commun 48 (2012) 3324-3326.

DOI: https://doi.org/10.1039/c2cc17081g

[27] N.R. Matthews, Electrodeposited tin selenide thin films for photovoltaic applications, Sol Energy 86 (2012) 1010-1016.

DOI: https://doi.org/10.1016/j.solener.2011.06.012

[28] R. Indirajith, T.P. Srinivasan, K. Ramamurthi, R. Gopalakrishnan, Synthesis, deposition and characterization of tin selenide thin films by thermal evaporation technique, Curr Appl Phys 10 (2010) 1402-1406.

DOI: https://doi.org/10.1016/j.cap.2010.05.002

[29] Z. Zainal, N. Saravanan, K. Anuar, M.Z. Hussein, W.M. M Yunus, Chemical bath deposition of tin selenide thin films, Mat Sci Eng B 107 (2004) 181-185.

DOI: https://doi.org/10.1016/j.mseb.2003.11.008

[30] W.J. Baumgardner, J.J. Choi JJ, L. Yee-Fun, T. Hanrath, SnSe nanocrystals: synthesis, structure, optical properties, and surface chemistry, J Am Chem Soc 132 (2010) 9519-9521.

DOI: https://doi.org/10.1021/ja1013745

[31] Z. Li, Z. Jiao, M. Wu, Q. Liu, H. Zhong, X. Geng, Synthesis and characterization of tin (II) selenide nanocrystalline by electron beam irradiation method, Colloids Surf A 313 (2008) 40-42.

DOI: https://doi.org/10.1016/j.colsurfa.2007.04.069

[32] K.J. John, B. Pradeep, E. Mathai, Tin selenide (SnSe) thin films prepared by reactive evaporation, J Mat Sci 29 (1994) 1581-1583.

DOI: https://doi.org/10.1007/bf00368929

[33] Y. Xing, J. Rao, Quantum dot bioconjugates for in vitro diagnostics and in vivo imaging, Cancer Biomark 4 (2008) 307-319.

[34] J. Tian, R. Liu, Y. Zhao, Q. Xu, S. Zhao, Controllable synthesis and cell imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid, J Colloid Interface Sci 336 (2009) 504-509.

DOI: https://doi.org/10.1016/j.jcis.2009.04.064

[35] F. Zhang, C. Li, X. Li, Q. Wan, Y. Xian, K. Yamamoto, ZnS quantum dots derived reagentless uric acid biosensor, Talanta 68 (2006) 1353-1358.

DOI: https://doi.org/10.1016/j.talanta.2005.07.051

[36] M.T. Goncalves, B.X.F. Pires, D.C.G. Bedoc, V.C. de Souza, L.R.P. de Abreu, D.P. de Santana, Determination of Indinavir in human plasma and its use in pharmacokinetic study. Rev Bras Cienc Farm 43 (2007) 640-647.

DOI: https://doi.org/10.1590/s1516-93322007000400018

[37] K.R. Nemade, S.A. Waghuley, UV-Vis spectroscopic study of one pot synthesized strontium oxide quantum dots, Results in Physics 3 (2013) 52-54.

DOI: https://doi.org/10.1016/j.rinp.2013.03.001

[38] S. Bruckensten, M. Shay, An in situ weighing study of the mechanism for the formation of the adsorbed oxygen monolayer at a gold electrode, J Electroanal Chem 188 (1985) 131-136.

[39] G. Hager, A.G. Brolo, Adsorption/desorption behaviour of cysteine and cysteine in neutral and basic media: electrochemical evidence for differing thiol and disulphide adsorption to a Au (111) single crystal electrode, J Eletroanal Chem 551 (2003).

DOI: https://doi.org/10.1016/s0022-0728(03)00052-4

[40] D. Zhao, Z. Jimei, D. Quanxi, D. Ning, X. Shichao, S. Bo, B. Yuehua, Adaption of Au nanoparticles and CdTe quantum dots in DNA detection, Chin J Chem Eng. 15(6) (2007) 791-794.

DOI: https://doi.org/10.1016/s1004-9541(08)60004-x

[41] E.I. Iwuoha, S. Joseph, Z. Zhang, M.R. Smyth, U. Fuhr, P.R. Ortiz de Montellano, Drug metabolism biosensors: electrochemical reactivities of cytochrome P450cam immobilised in synthetic vesicular systems, J Pharm Biomed Anal 17 (1998)1101-111.

DOI: https://doi.org/10.1016/s0731-7085(98)00076-4

[42] A. Ignaszak, N. Hendricks, T. Waryo, E. Songa, N. Jahed, R. Ngece, A. Al-Ahmed, B. Kgarebe, P.G.L. Baker, E.I. Iwuoha, Novel therapeutic biosensor for indinavir-A protease inhibitor antiretroviral drug, J Pharm. Biomed Anal 49 (2009) 498-501.

DOI: https://doi.org/10.1016/j.jpba.2008.10.025