A Novel Drug Delivery System for Bisphosphonates: Innovative Strategy for Local Treatment of Bone Resorption



One type of potent aminobisphosphonate (Zoledronate) has been chemically associated onto b-tricalcium phosphate [b-TCP] and calcium deficients apatite [CDA]. Two different association modes have been observed, according to the nature of the Calcium Phosphate [CaP] support and/or the initial concentration of the Zoledronate solution. b-TCP appears to promote Zoledronate-containing crystals formation. On the other hand, at concentrations < 0.05 mol.L-1 CDA seems to undergo chemisorption of the drug through a surface adsorption process, due to PO3 for PO4 exchange, which is well described by Freundlich equations. At concentrations > 0.05 mol.L-1, crystalline needles of a Zoledronate complex form onto the CDA surface. The ability of CDA to release Zoledronate, resulting in the inhibition of osteoclastic activity, was shown using a specific in vitro bone resorption model.





Panjian Li, Kai Zhang and Clifford W. Colwell, Jr.






S. Josse et al., "A Novel Drug Delivery System for Bisphosphonates: Innovative Strategy for Local Treatment of Bone Resorption ", Key Engineering Materials, Vols. 284-286, pp. 399-402, 2005


April 2005




[1] Fleich H. In: Bisphosphonates in Bone Disease. From the Laboratory to the Patients. San Francisco: Academic Press, (2000).

[2] See for example: Bisphosphonates for osteoporosis. Drug and Therapeutics Bulletin 2001; 39: 68-72 and references therein.

[3] Doggrell SA. Zoledronate once-yearly increases bone mineral density - implications for osteoporosis. Expert Opin Pharmacother 2002; 3: 1007-1009.

DOI: 10.1517/14656566.3.7.1007

[4] (a) Denissen H, Van Beek E, Löwik C, Papapoulos S, Van der Hooff A. Ceramic hydroxyapatite implants for the release of bisphosphonate. Bone Min 1994; 25: 123-134. (b) Denissen H, Van Beek E, Van den Bos T, De Blieck J, Klein C, Van den Hooff A. Degradable bisphosphonate -alkaline phosphatase-complexed hydroxyapatite implants in vitro. J Bone Miner Res 1997; 12: 290-297. (c) Denissen H, Van Beek E, Martinetti R, Klein C, Van der Zee E, Ravaglioli A. Net-shaped hydroxyapatite implants for release of agents modulating periodontal-like tissues. J Periodont Res 1997; 32: 40-46. (d) Denissen H, Martinetti R, Van Lingen A, Van den Hooff A. Normal osteoconduction and repair in and around submerged highly bisphosphonate-complexed hydroxyapatite implants in rat tibiae. J Periodont 2000; 71: 272-278. (e) Denissen H, Montanari C, Martinetti R, Van Lingen A, Van den Hooff A. Alveolar bone response to submerged bisphosphonate-complexed hydroxyapatite implants. J Periodont 2000; 71: 279-286.

DOI: 10.1016/s0169-6009(08)80254-1

[5] (a) Daculsi G, Bagot d'Arc M, Corlieu P, Gersdorff M. Macroporous biphasic calcium phosphate efficiency in mastoid cavity obliteration: experimental and clinical findings. Ann Otol Rhinol Laryngol 1992; 101: 669-674. (b) Piattelli A, Scarano A, Mangano C. Clinical and histologic aspects of biphasic calcium phosphate ceramic (BCP) used in connection with implant placement. Biomaterials 1996; 17: 1767-1770. (c) Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, Morin C, Michel F, Garin C, Pries D. Synthetic porous ceramic compared with autograft in scoliosis surgery : A prospective, randomized study of 341 patients. J Bone Joint Surg Br 1998; 80: 13-18. (d) Cavagna R, Daculsi G, Bouler JM. Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion. J Long Term Eff Med Implants 1999; 9: 403-412. (e) Delecrin J, Takahashi S, Gouin F, Passuti N. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine 2000; 25(5): 563-569.

DOI: 10.1097/00007632-200003010-00006

[6] Josse S., Bujoli B., Guicheux J., Janvier P., Daculsi G., Bouler J.M., Patent 2003-WO03074098.

[7] Bouler JM, LeGeros RZ, Daculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/beta-TCP ratio. J Biomed Mater Res 2000; 51: 680-684.

DOI: 10.1002/1097-4636(20000915)51:4<680::aid-jbm16>3.0.co;2-#

[8] Ames BN. Assay of inorganic phosphate, total phosphate and phosphatases. In Colowick SP, Kaplan NO, editors. Methods in Enzymology. Orlando: Academic Press, 1966, vol. 8. pp.115-118.

DOI: 10.1016/0076-6879(66)08014-5

[9] Guicheux J, Heymann D, Rousselle AV, Gouin F, Pilet P, Yamada S, Daculsi G. Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I: an in vitro study. Bone 1998; 22: 25-31.

DOI: 10.1016/s8756-3282(97)00224-x

[10] Freundlich H. In : Colloid and Capillary Chemistry. London : Methuen, (1926).

[11] For a review, see: Heymann D, Guicheux J, Gouin F, Passuti N, Daculsi G. Cytokines, growth factors and osteoclasts. Cytokine 1998; 10(3): 155-168.

DOI: 10.1006/cyto.1997.0277

[12] David JP, Neff L, Chen Y, Rincon M, Horne WC, Baron R. A new method to isolate large numbers of rabbit osteoclasts and osteoclast-like cells: Application to the characterization of serum response element binding proteins during osteoclast differentiation. J Bone Miner Res 1998; 13(11): 1730-1738.

DOI: 10.1359/jbmr.1998.13.11.1730

[13] Tezuka K, Sato T, Kamioka H, Nijweide PJ, Tanaka K, Matsuo T, Ohta M, Kurihara N, Hakeda Y, Kumegawa M. Identification of osteopontin in isolated rabbit osteoclasts. Biochem Biophys Res Commun 1992; 186(2): 911-917.

DOI: 10.1016/0006-291x(92)90832-6

[14] Peck, W.A.; Burkhardt, P; Christiansen, C; American Journal of Medicine, 1993, 94, 645-650.

为了查看相关信息, 需 Login.