Advanced Nondestructive Evaluation I

321-323卷

doi: 10.4028/www.scientific.net/KEM.321-323

文章题目 页数

作者: Se Jin Park, Hyuna Ja Lee
摘要: Therefore the objective of this study was to examine the differences of calf temperature by infrared thermal imager between on anti-fatigue matt and on the floor without mat. The subjects were instructed to wear short pants. It was measured with bare feet because influence of shoes and socks was to except. Subjects worked during 1 hour on the mat or without mat and next day without mat or on the mat. The order and load of work kept regularly. In this study, there was also a significant difference (p < 0.001) in the calf skin temperature between conditions, and calf temperature was higher when the subjects were standing on the mat than when they were standing on the floor without mat. By providing an elastic surface to stand on, a matt simulates muscle activity in feet and legs promote blood circulation. As a cross-modality evaluation, electromyogram was measured. There was the significant difference in Median Frequency (p < 0.001) and Median Power Frequency (p < 0.05) of EMG between two conditions. Median Frequency and Median Power Frequency showed a tendency to more decrease on the floor.
853
作者: Takahiko Otani
摘要: Osteoporosis is a disease characterized by decreasing bone density, and is assessed by the bone mass density of cancellous bone. An X-ray method is widely used for noninvasive measurement of bone mass density [mg/cm3]. An ultrasonic method has the potential to evaluate the elastic properties, however measured ultrasonic parameters are the slope of frequency dependent attenuation (BUA [dB/MHz]) and the speed of sound (SOS [m/s]), not the bone mass density [mg/cm3]. In previous study, two longitudinal waves, the fast and slow waves, were observed in cancellous bone. In this study, the propagation path through cancellous bone is modeled to specify the causality between ultrasonic wave parameters and bone density. Then bone density and bone elasticity are quantitatively formulated. A novel ultrasonic bone densitometry, prototype LD-100, have been developed. The bone density [mg/cm3] and the bone elasticity [GPa] are evaluated by ultrasonic parameters based on the fast and slow waves in cancellous bone using a modeling of ultrasonic wave propagation path.
857
作者: Yasuyuki Morita, Kazuo Arakawa, Mitsugu Todo
摘要: Thermal deformation behaviors of electronic packages, stacked-MCP (multi chip package) and SOJ (small outline J-leaded package) were measured by phase-shifting moiré interferometry. This method was developed using a wedged glass plate as a phase shifter to obtain displacement fields with a sensitivity of nanometer scale. Digital image processing was also introduced to determine the strain distributions quantitatively. In stacked-MCP, thermal loading was applied from room temperature 25°C to two elevated temperatures (75 and 100°C), and thermal strains were then examined at these two elevated temperatures. The results showed that the normal strain εxx concentrated at the ends of two silicon chips, and the transverse strain εyy increased between the two silicon chips. The shear strain γxy increased at the end of the lower silicon chip to 0.30% from 0.17% when the temperature increased by 25°C. In SOJ, the thermal strains were investigated with the two packages before and after mounted on PWB (printed wiring board). The results showed that the strains increased by about 50% when the SOJ was mounted on the PWB.
862
作者: M.H. Kim, Kyong Yop Rhee, Young Nam Paik, S.H. Ryu
摘要: For a present study, the surfaces of graphite/epoxy prepregs were modified using plasma treatment to improve the delamination resistance behavior of graphite/epoxy laminated composites. The optimal treatment time was determined by measuring the change of contact angle with treatment time. Unidirectional DCB (double cantilever beam) specimens were used in the mode I delamination fracture tests. The delamination resistance curve of regular (untreated) specimen was compared with that of plasma-treated specimen in order to determine the effect of prepreg treatment on the resistance behavior. It was found that contact angle was changed from ~64° to ~47° depending on the treatment time. The contact angle was a minimum for a 30 min treatment time. It was also found that delamination resistance behavior of graphite/epoxy composites was improved about 20%.
869
作者: Akira Todoroki, Kazuomi Omagari, Masahito Ueda
摘要: For a cryogenic fuel tank of a next generation rocket, a Carbon Fiber Reinforced Plastic (CFRP) laminated composite tank is one of the key technologies. For the fuel tank made from the laminated composites, matrix cracks are significant problems that cause leak of the fuel. In the present paper, electrical resistance change method is adopted to monitor the matrix cracking of the CFRP laminate. Previous studies show that tension load in fiber direction causes electrical resistance increase due to the piezoresistivity of the carbon fibers, and fiber breakages also cause the electrical resistance increase of the CFRP laminates. In order to distinguish the electrical resistance changes due to matrix cracking from those due to the piezoresistivity and the fiber breakages, residual electrical resistance change under the complete unloading condition is employed in the present study. Experimental investigations were performed using cross-ply laminates in cryogenic temperature. As a result, it can be revealed that the residual electrical resistance change is a useful indicator for matrix crack monitoring of the cross-ply CFRP laminates.
873
作者: Kil Sung Lee, In Young Yang
摘要: The front-end side members of automobiles, such as the hat-shaped section member, absorb the most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP hat-shaped section members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial collapse tests were performed for the section members. The collapse mode and the energy absorption capability of the section members were analyzed under the static load.
877
作者: In Young Yang, Kil Sung Lee, Cheon Seok Cha
摘要: In this study, the impact collapse tests were performed to investigate collapse characteristics of Al/CFRP member which were composed of aluminum members wrapped with CFRP (Carbon Fiber Reinforced Plastics) outside aluminum member. Aluminum members absorb energy by stable plastic deformation, while CFRP members absorb energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combing the two members, Al/CFRP members were manufactured and impact collapse tests were performed for the members. Based on the respective collapse characteristics of aluminum and CFRP members, the collapse modes and energy absorption capability were analyzed for Al/CFRP member which have different fiber orientation angle of CFRP. Test results showed that the collapse of the Al/CFRP member complemented unstable brittle failure of the CFRP member due to ductile nature of the inner aluminum member and the fiber orientation angle of Al/CFRP members influence energy absorption capability and collapse mode.
881
作者: In Young Yang, Young Jea Cho, Young Nam Kim, Uk Heo, Sang Guk Park, Kwang Hee Im, Ji Hoon Kim, Jae Ki Sim
摘要: Carbon fiber reinforced plastics, among the advanced composite material watched with keen interests today, is widely used as structural components requiring light weight property because of its high specific strength as well as high specific rigidity. However, this material has a drawback of weakness against a transverse impact loading acting toward the direction of its stacked thickness, which requires different design parameters other than those used for general metal products in actual application. In connection with this point of view, this study utilized specimen of laminated composite material shell having certain radius of curvature considering actual structural component made of laminated CFRP composite material. Penetration experiment was conducted by measuring time of penetration of steel ball between two points where ballistic-screen sensors were attached on front and reverse side of the specimen with the air gun under air pressure that is adjusted by the pressure gauge attached to. Critical penetration energy was found by measuring kinetic energies of the steel ball before and after the penetration. In order to identify crack pattern and penetration mode generated inside the specimen after the experimental penetration, this study used digitalized optical microscope. Through this study, therefore, penetration characteristics by changes in number of layers, by different stacking sequences as well as penetration mode have been observed.
885
作者: In Young Yang, Kwang Hee Im, David K. Hsu, Sung Jin Song, Hyeon Cho, Sun Kyu Kim, Young Hwan Seo, Je Woong Park
摘要: Carbon/phenolic composite (CPC) materials are unique which consist of carbon fibers embedded in a carbon matrix. The CPCs are originally developed for aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. The properties of the CPC are dependent on the manufacturing methods used for production and fiber arrangement. It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity in order to ensure product quality and structural integrity of CPC brake disks. In this work, a CPC material was nondestructively characterized and a technique was developed to measure ultrasonic velocity in C/P composites using automated data acquisition software. Also a motorized system was adopted to measure ultrasonic velocity on the point of CPC materials under the same coupling conditions. Manual results were compared with those obtained by the motorized system with using drycoupling ultrasonics and through transmission method in immersion. A peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method and throughtransmission mode and C-scan image signal based on peak-to-peak amplitude.
889
作者: Young Sub Kweon, Kwang Hee Im, David K. Hsu, Dong Fei, Seung Woo Ra, Kil Sung Lee, Je Woong Park, Jae Ki Sim, In Young Yang
摘要: A nondestructive technique would be very beneficial, which could be used to test the part before (uncured) and after curing CF/Epoxy. A new method for nondestructively determining the ply layup in a composite laminate is presented. The method employs a normal-incidence longitudinal ultrasound to perform C-scan of ply interfaces of the laminate, and extracts fiber orientation information from the ultrasonic reflection in the laminate. Using two-dimensional spatial Fourier transform, interface C-scan images were transformed into quantitatively angular distribution plots to show the fiber orientation information therein and to determine the orientation of the ply. In order to develop these methods into practical inspection tools, an automated system using a motor has been developed for different measurement modalities for acquiring ultrasonic effects of ply-layup error. Therefore, it is found that the efficiency of developed system shows between the practical testing and model in characterizing cured/uncured ply-layup error of the laminates. A C-scan image of a ply interface seem to have the ply-layup error information of the two neighboring plies of CF/Epoxy composite laminates.
893

显示395个文章标题中的191到200个