Modelling Intergranular Microfracture Using a Boundary Cohesive Grain Element Formulation



In this paper, intergranular microfracture evolution in polycrystalline brittle materials is simulated using a cohesive grain boundary integral formulation. A linear cohesive law is used for modelling multiple microcracking initiation and propagation under mixed mode failure conditions, encountering the stochastic e=ects of the grain location, morphology and orientation. Furthermore, in cases where crack surfaces come into contact, slide or separate, fully frictional contact analysis is performed.




M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz




G.K. Sfantos and F. M.H.Aliabadi, "Modelling Intergranular Microfracture Using a Boundary Cohesive Grain Element Formulation", Key Engineering Materials, Vols. 324-325, pp. 9-12, 2006


November 2006




[1] A.G. Crocker, P.E.J. Flewitt and G.E. Smith: Int. Materials Reviews Vol. 50 (2005), p.99.

[2] E.P. George, C.T. Liu, H. Lin and D.P. Pope: Materials Science and Engineering A Vol. 92-93 (1995), p.277.

[3] H.D. Espinosa and P.D. Zavattieri: Mechanics of Materials Vol. 35 (2003), p.333.

[4] J.D. Clayton: Int. Journal of Solids and Structures Vol. 42 (2005), p.4613.

[5] J. Zhai, V. Tomar and M. Zhou: J. of Engng Materials and Techn., Trans. ASME Vol. 126 (2004), p.179.

[6] N. Sukumar, D.J. Srolovitz, T.J. Baker and J.H. Prevost: Int. J. for Num. Meth. in Engng Vol. 56 (2003), p. (2015).

[7] M.H. Aliabadi: The Boundary Element Method, Volume 2, Applications in Solids and Structures (Wiley, London 2002).

[8] G.K. Sfantos and M.H. Aliabadi: Int. J. for Num. Meth. in Engng (2006), submitted.

[9] M. OrtizandA. Pandolfi: Int. J. for Num. Meth. in Engng Vol. 44 (1999), p.1267.

[10] A. Okabe, B. Boots, K. Sugihara and S.N. Chiu: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, Chichester 2000).

[11] V. Tomar, Z. Jun and Z. Min: Int. J. for Num. Meth. in Engng Vol. 61 (2004), p.1894.

[12] R.F.S. Hearmon, in: Numerical data and functional relationships in science and technology: Group III, Crystal and solid state physics, Vol. 1, Elastic, piezoelectric, piezooptic and electrooptic constants of crystals, edited by K.H. Hellwege, Springer, Berlin (1966).

[13] ASTM E112-96 (Reapproved 2004): Standard Test Methods for Determining Average Grain Size (ASTM International).

[14] R.W. Hertzberg: Deformation and fracture mechanics of engineering materials (Wiley, Chichester 1996).

[15] S.F. Pugh: British Journal of Applied Physics Vol 18 (1967), p.129.

[16] P.A. Klerck, E.J. Sellers and D.R.J. Owen: Comp. Meth. in Applied Mech. and Engng Vol. 193 (2004), p.3035.