Finite Element Analyses of Cracks in Piezoelectric Structures

摘要:

文章预览

A review is given about FEM-techniques to compute the coupled electromechanical boundary value problem of cracks in piezoelectric structures under static and dynamic loads. To calculate the relevant fracture parameters very precisely and efficient, the following numerical techniques are presented: i) Special singular crack tip elements, ii) Modified crack closure integral, iii) Computation of electromechanical J-integral and iv) Usage of interaction integrals. Special emphasis is devoted to different electric crack face boundary conditions. The accuracy, efficiency and applicability of these techniques are examined by various example problems and discussed with respect to their advantages and drawbacks for practical applications.

信息:

期刊:

编辑:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel

页数:

629-632

引用:

M. Kuna, "Finite Element Analyses of Cracks in Piezoelectric Structures", Key Engineering Materials, Vols. 348-349, pp. 629-632, 2007

上线时间:

September 2007

作者:

输出:

价格:

$38.00

[1] Q. H. Qin: Fracture mechanics of piezoelectric materials, WIT Press, Southampton, (2001).

[2] T.Y. Zhang, M.H. Zhao, and P. Tong: Advances in Appl. Mechanics. 38 (2002) 147-289.

[3] M. H. Aliabadi and D.P. Rooke: Numerical Fracture Mechanics. Computational Mechanics Publications, Kluwer Academic Publisher, Southampton/Dordrecht/Boston/London (1991).

[4] M. Kuna: Computational Material Science 13 (1998) 67-80.

[5] M. Abendroth, U. Groh, M. Kuna and A. Ricoeur: Int. J. of Fracture 114 (2002) 359-378.

[6] S. Park and C.T. Sun: J. American Ceramics Soc. 78 (1995)1475-1480.

[7] F. Shang, M. Kuna and M. Abendroth: Eng. Fracture Mechanics 70 (2003)143-160.

[8] T. Hao and Z. Shen: Eng. Fracture Mechanics 47(6), 1994, 793-802.

[9] K. Wippler, A. Ricoeur and M. Kuna: Eng. Fracture Mechanics 71 (2004) 2567-2587.

[10] M. Enderlein, A. Ricoeur and M. Kuna: Int. J. of Fracture 134 (2005) 191-208 Fig. 5 Capacitor analogy for crack interior with permittivity Cκ 1 2 1 2 1 2 1 ( ) ( ) ( ) ( ) C C C x D x E x u x ϕ κ κ ∆ = = − ∆ (10).