Dynamic Analysis of Antiplane Crack under SH-Waves in the Functionally Graded Materials

摘要:

文章预览

In this paper, the behavior of a finite crack in an infinite plate of functionally graded materials (FGM) with free boundary subjected to SH-waves is considered. To make the analysis tractable, it is assumed that the material properties vary exponentially with the thickness direction and the problem is transformed into a dual integrated equation with the method of integral transform. The dynamic stress intensity factor is obtained using Schmidt method. The numerical examples are presented to demonstrate this numerical technique for SH-waves propagating in FGM plate. Finally the number of the waves, the gradient parameter of FGM and the angle of the incidence upon the dynamic stress intensity factor are also given.

信息:

期刊:

编辑:

Yu Zhou, Shan-Tung Tu and Xishan Xie

页数:

38-41

DOI:

10.4028/www.scientific.net/KEM.353-358.38

引用:

X. G. Li et al., "Dynamic Analysis of Antiplane Crack under SH-Waves in the Functionally Graded Materials", Key Engineering Materials, Vols. 353-358, pp. 38-41, 2007

上线时间:

September 2007

输出:

价格:

$35.00

[1] C. E. Rousseaau, H. V. Tippur: Acta Materoalia Vol. 48 (2000), p.4021.

[2] N. T. Shbeeb, W. K. Binienda: Engng. Frac. Mech Vol. 48 (1999), p.693.

[3] O. Kolednik: Int. J. Solids. Struct Vol. 37 (2000), p.781.

[4] G. B. Li: Appl. Math. Mech Vol. 14(1993), p.1057.

[5] B. Z. Gai: J. Harbin. Inst. Tech Vol. 9 (2002), p.229.

[6] Liu. G. R, Han. X, Lam. K. Y: Composite Vol. 30 (383).

[7] P. M. Morse, H. Feshbach, Methods of Theoretical Physics Vol. 1, McGraw-Hill, New York, (1958).

[8] S. Itou, ASME J. Appl. Mech. Vol. 45 (1978), p.807.

[9] Z G. Zhou, B. Wang, Y. G. Sun. Wave Motion Vol. 39(2004), p.213.

[10] I. S . Gradshteyn, I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, New York, (1980).

为了查看相关信息, 需 Login.