Calcium Phosphate Ceramic Blasting on Titanium Surface Improve Bone Ingrowth



Surface roughness modulates the osseointegration of orthopaedic and dental titanium implants. High surface roughness is currently obtained by blasting of titanium implants with silica or aluminium abrasive particles. This process includes into the surface abrasive particles and may cause the release of cytotoxic silica or aluminium ions in the peri implant tissue. To overcome this drawback, we currently develop an innovative gridblasting process using Biphasic Calcium Phosphate (BCP) particles (RBBM Resorbable and Biocompatible Blast Media) to generate biocompatible roughened titanium surface. This work present the technique of blasting using RBBM particles to provide a roughened surface which does not release cytotoxic elements and (ii) to assess the effects of such a roughened surface for bone osteointegration in critical size rabbit defect. Our results demonstrate that resorbable biphasic calcium phosphate abrasive particles can be used to create titanium surface roughness. This grid blasting process increases surface roughness of titanium implants and offers a non cytotoxic surface for rapid and efficient osteointegration.





Guy Daculsi and Pierre Layrolle




E. Goyenvalle et al., "Calcium Phosphate Ceramic Blasting on Titanium Surface Improve Bone Ingrowth", Key Engineering Materials, Vols. 361-363, pp. 1351-1354, 2008


November 2007




[1] Thomas K. A, Cook SD (1985), J Biomed Mater Res 19: 875-901.

[2] Predecki P., Stephan JE., Auslaender BA., Mooney VL., Kirkland K. (1972), J Biomed Mater Res 6: 375-400.

[3] Carlsson L., Rostlund T., Albrektsson B. (1988), Int J Oral Maxillofac Implants 3: 21-24.

[4] Daculsi G., Laboux O, Legeros RZ., (2002) ITBM-RBM 23: 317-25.

[5] Gbureck U. Masten A;, Probst J., Thull R. (2003) Mat Sci Eng 23: 461-5.

[6] Esposito M., Hirsch JM., Lekholm U., Thomsen P. (1998) 106: 721-64.

[7] Lincks J., Boyan BD., Blanchard CR., Lohmann CH., Liu Y., Cochran DL., Schwartz Z., (1998) Biomaterials 19: 2219-32.

[8] Boyan BD., Sylvia VL., Liu Y., Sagun R., Cohran DL., Lohmann CH., Dean DD., Schwartz Z. (199) Biomaterials 20: 2305-10.

[9] Deligianni DD., Katsala N., Ladas S., Sotiropoulou D., Amedee J., Missirlis YF. (2001) Biomaterials 22: 1241-51.

[10] Anselme K., Bigerelle M., Dufresne E., Judas D., Ioost A., Hardouin P. (2000) J Biomed Mater Res 49: 155-166.

[11] Anselme K. (2000) Biomaterials 21: 667-81.

[12] Wenneberg A., Albrektsson T., Andersson B. (1996) Int Oreal Maxillofac Implants 11: 3845.

[13] Aebli N., Krebs J., Stich H., Schawalder P., Walton M., Schwenke D., Gruner H., Gasser B., Theis JC. (2003) J Biomed Mater Res 66A: 356-363.


[14] Citeau A., Guicheux J., Vinatier C., Layrolle P., Nguyen TP., Pilet P., Daculsi G. (2005) Biomaterials 26 : 3631-8.


[15] Daculsi G, Weiss P, Bourges X, Bretagne; (2004) Patent Biomatlante SAS Vigneux de Bretagne and INSERM and Université de Nantes. n°04 01151. 2004 06/02/(2004).

[16] Goyenvalle E.,. Aguado E ,. Cognet, R,. Moreau F., Pilet P,. Bourges X ., Daculsi G. (2006) proceedings 19 international conference of the European Society for Biomaterials ESB.