The Effect of Atmosphere Disturbances on Laser Beam Propagation



In this article, we probe the atmosphere disturbance such as Attenuation, Scattering, turbulence and thermal blooming on the laser beam propagated it. For investigating, we designed software which gives the vertically propagation characteristics of a general-type beam in atmosphere, based on the Huygens–Fresnel principle. When the required source and medium parameters are entered, the simulator yields the average intensity profile along the propagation axis in a video format. The results show that the peak value of the average intensity can be astonishingly affected by atmospheric turbulence, thermal blooming effect (for typical high power lasers) and the laser beam diameter.




David Wang




S. H. Hashemipour et al., "The Effect of Atmosphere Disturbances on Laser Beam Propagation", Key Engineering Materials, Vol. 500, pp. 3-8, 2012


January 2012




[1] Fante RL. In: Wolf E, editor. Progress in optics XXII: wave propagation in random media: a systems approach. Amsterdam: Elsevier; 1985 [Chapter VI].

[2] Tao Wang, JixiongPu, Ziyang Chen, Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere, Optics Communications 282 (2009) 1255–1259.


[3] K. S. Shaik, Atmospheric Propagation Effects Relevant to Optical Communications, TDA Progress Report 42-94 April-June (1988).

[4] M. Alavinejad*, F. Ashiri, B. Ghafary, Propagation properties of partially coherent beams through turbulent media with coherent modes representation, OpticaApplicata, Vol. XXXVIII, No. 3, (2008).

[5] Z. I. Feizulin and Y. Kravtsov, Broadening of a laser beam in a turbulent medium, Radiophys. Quantum Electron 10, 33-35 (1967).


[6] S. C. H. Wang and M. A. Plonus, Optical beam propagation for a partially coherent source in the turbulent atmosphere, J. Opt. Soc. Am. 69, 1297-1304 (1979).


[7] R. L. Phillips and L. C. Andrews, Spot size and divergence for Laguerre Gaussian beams of any order, Appl. Opt. 22, 643-644 (1983).


[8] C. Y. Young, Y. V. Gilchrest, and B. R. Macon, Turbulence induced beam spreading of higher order mode optical waves, Opt. Eng. 41, 1097-1103 (2002).


[9] H. T. Eyyuboğlu and Y. Baykal, Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere, Appl. Opt. 44, 976-983 (2005).


[10] H. T. Eyyuboğlu and Y. Baykal, Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in turbulent atmosphere, Opt. Express 12, 4659-4674 (2004).


[11] H. T. Eyyuboğlu and Y. Baykal, Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beams in turbulent atmosphere, J. Opt. Soc. Am. A 22, 2709-2718 (2005).


[12] Y. Cai and S. He, Average intensity and spreading of an elliptical Gaussian beam in a turbulent atmosphere, Opt. Lett. 31, 568-570 (2006).


[13] Y. Cai and S. He, Propagation of various dark hollow beams in a turbulent atmosphere, Opt. Express 14, 1353-1367 (2006).


[14] H. T. Eyyuboğlu, Ç. Arpali, and Y. Baykal, Flat topped beams and their characteristics in turbulent media, Opt. Express 14, 4196-4207 (2006).


[15] H. T. Eyyuboğlu, S. Altay, and Y. Baykal, Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence, Opt. Commun. 264 25-34 (2006).


[16] J.W. Strohbehn 1978 Laser Beam Propagation in the Atmosphere(Springer-Verlag Berlin Heidelberg New York) 11- 41.

[17] Alastair D. McAulay Generating 2000 Kolmogorov phase screens for modeling optical turbulence In Laser Weapons Technology(Todd D. Steiner, Paul H. Merritt, Editors) SPIE403450-57.


[18] M. Philbert, et. al, Thermal Blooming of high power laser beams, JOURNAL DE PHYSIQUE supplement au nO1l, Tome 41, November 1980, page C9-149.


[19] Frederick G. Smith The Infrared & Electro- Optical Systems Handbook, volume 2 Atmospheric propagation of radiation. Environmental Research institute of Michigan. (1993).