Fabrication of Hollow Silica-Alumina Composite Spheres Using L(+)-Arginine and their Catalytic Performance for Hydrolytic Dehydrogenation of Ammonia Borane

摘要:

文章预览

The present study reports a facile and effective approach for fabrication of hollow silica-alumina composite spheres. In this approach, silica-alumina composite walls were coated on polystyrene template by the sol-gel method using L(+)-arginine as a promoter for the reaction followed by calcination procedure. Using L(+)-arginine as a promoter of coating process, homogeneous hollow silica-alumina composite spheres are obtained and the wall thickness is larger than that of the hollow spheres prepared with ammonia. The hollow spheres shows high activity for hydrolytic dehydrogenation of ammonia borane compared with spherical silica-alumina composite particles without hollow structure, the hollow spheres prepared with ammonia, and conventional H-BEA zeolite. The results indicate that hollow structure plays important role to show high activity.

信息:

期刊:

编辑:

Kenjiro Fujimoto, Shigehiro Kawamori, Stéphane Cordier and Franck Tessier

页数:

170-173

引用:

T. Umegaki et al., "Fabrication of Hollow Silica-Alumina Composite Spheres Using L(+)-Arginine and their Catalytic Performance for Hydrolytic Dehydrogenation of Ammonia Borane", Key Engineering Materials, Vol. 617, pp. 170-173, 2014

上线时间:

June 2014

输出:

价格:

$38.00

* - 通讯作者

[1] J. Turner, G. Sverdrup, K. Mann, P.G. Maness, V. Kroposki, M. Ghirardi, Int. J. Energy Res. 32 (2008) 379-407.

[2] A.W.C.V. Berg, C.O. Arean, Chem. Commun. 27 (2008) 668-681.

[3] M. Chandra, Q. Xu, J. Power Sources 159 (2006) 855-860.

[4] N. Toyama, T. Umegaki, Q. Xu, Y. Kojima, J. Jpn. Inst. Ener., submitted.

[5] M. Chandra, Q. Xu, J. Power Sources 168 (2007) 135-142.

[6] T. Umegaki, J.M. Yan, Z.B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, J. Power Sources 191 (2009) 209-216.

[7] Ö. Metin, S. Özkar, Int. J. Hydrogen Energy 36 (2011) 1424-1432.

[8] T. Umegaki, C. Takei, Q. Xu, Y. Kojima, Int. J. Hydrogen Energy 38 (2013) 1397-1404.

[9] T. Umegaki, C. Takei, Y. Watanuki, Q. Xu, Y. Kojima, J. Mol. Catal. A: Chem. 371 (2013) 1-7.

[10] A. Imhof, Langmuir 17 (2001) 3579-3585.

[11] Z. Deng, M. Chen, S. Zhou, B. You, L. Wu, Langmuir 22(14) (2006) 6403-6407.

[12] F. Caruso, R.A. Caruso, H. Möhwald, Science 282 (1998) 1111-1114.

[13] H.W. Duan, D.Y. Wang, N.S. Sobal, M. Giersig, D.G. Kurth, H. Mohwald, Nano Lett. 5 (2005) 949-952.

DOI: https://doi.org/10.1021/nl0505391

[14] T. Nakashima, N. Kimizuka, J. Am. Chem. Soc. 125 (2003) 6386-6387.

[15] W.J. Li, M.O. Coppens, Chem. Mater. 17 (2005) 2241-2246.

[16] T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, J. Am. Chem. Soc. 128 (2006) 13664-13665.