Formation of Compositional Gradient during Fabrication of FGMs by a Centrifugal In Situ Method

摘要:

文章预览

The purpose of the present work is to study the formation of the compositional gradient during the fabrication of FGMs by a centrifugal in-situ method. Al-Al2Cu FGMs were fabricated by the centrifugal in-situ method using eutectic Al-33mass%Cu alloy, and the microstructures of fabricated FGMs were studied. It was found that the Al-Al2Cu FGMs could be fabricated by the centrifugal in-situ method from eutectic alloy. Based on the experimental results, the formation mechanism of the compositional gradient during the fabrication of FGM by the centrifugal in-situ method in the A-B alloy could be summarized as follows; 1) Partial separation of A and B elements in the liquid state occurs due to the density difference. 2) A compositional gradient is formed before the crystallization of the primary crystal. 3) The primary crystals in the matrix appear to depend on local chemical composition. 4) The primary crystals migrate according to density difference, and a further compositional gradient is formed.

信息:

期刊:

编辑:

Omer Van der Biest, Michael Gasik, Jozef Vleugels

页数:

693-698

DOI:

10.4028/www.scientific.net/MSF.492-493.693

引用:

Y. Watanabe et al., "Formation of Compositional Gradient during Fabrication of FGMs by a Centrifugal In Situ Method ", Materials Science Forum, Vols. 492-493, pp. 693-698, 2005

上线时间:

August 2005

输出:

价格:

$38.00

[1] Y. Fukui: JSME Inst. J. Ser. III Vol. 34 (1991), p.144.

[2] Y. Fukui and Y. Watanabe: Metall. Mater. Trans. A Vol. 27A, (1996) p.4145.

[3] Y. Watanabe, N. Yamanaka and Y. Fukui: Composites Part A Vol. 29A (1998), p.595.

[4] Y. Watanabe, N. Yamanaka and Y. Fukui: Metall. Mater. Trans. A Vol. 30A (1999), p.3253.

[5] Y. Watanabe and Y. Fukui: Alumi. Trans. Vol. 2, (2000) p.195.

[6] Y. Watanabe, H. Eryu and K. Matsuura: Acta Mater. Vol. 49 (2001), p.775.

[7] L. A. Rocha, A. E. Dias, D. Soares, C. M. Sa and A. C. Ferro: Ceramic Trans. Vol. 114, (2001), p.467.

[8] Y. Watanabe, A. Kawamoto and K. Matsuda: Comp. Sci. Tech. Vol. 62 (2002), p.881.

[9] A. Velhinho, P.D. Sequeira, F. F. Braz, J. D. Botas, L.A. Rocha: Mater. Sci. Forum Vols. 423-425 (2003), p.257.

[10] Z. Xu: Mater. Sci. Forum Vols. 423-425 (2003), p.619.

[11] K. Yamagiwa, Y. Watanabe, Y. Fukui and P. Kanpranos: Mater. Trans JIM Vol. 44 (2003), p.2461.

[12] Y. Watanabe, R. Sato, K. Matsuda and Y. Fukui: Sci. Eng. Comp. Mater. Vol. 11 (2004), p.185.

[13] R. R. Miller: Physical Properties of Liquid Metals, in Lyon RN (Editor-in-Chief) Liquid-Metals Handbook, 2nd Edition. (Washington, D. C, USA, 1952), p.38.

[14] P. J. Wray: Met. Trans. Vol. 5 (1974), p.2602.

[15] M. H. Hebb, F. H. Smith: Centrifugal Separation, in Kirk RE, Othmer DF (Editors) Encyclopedia of Chemical Technology, Vol. 3. (The Interscience Encyclopedia, Inc., USA, 1949), p.501.

[16] T. Mashimo, S. Okazaki and S. Tashiro: Jpn J. Appl. Phys. Vol. 36 (1997), p. L498.

[17] H. Aoki, T. Shibata and T. Itami: J. Phys.: Condens Matter Vol. 11 (1999), p.10315.

为了查看相关信息, 需 Login.