Processing Routes for Obtaining Novel High Performance Mn-Containing PM Steels

摘要:

文章预览

A Mn-containing master alloy (MA) has been specially designed, through thermodynamic and metallurgical criteria, for obtaining high performance low alloy PM steels by SPSS or DPDS. This MA exhibits improved characteristics with respect to ferromanganese and other Mn carriers for alloying PM steels preventing oxidation, keeping a high compressibility of the powder mixture and providing opportunities for low temperature processing. The improved sinterability through the formation of a transient liquid phase leads to dimensional stability and high reproducibility of mechanical properties after sintering at 1120°C. The microstructural development of the PM steels was studied during the sintering cycles. The final microstructure of these PM steels, after defined sintering cycles, was characterised by LOM while the mechanical properties of the consolidated materials were determined by tensile testing.

信息:

期刊:

编辑:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim

页数:

705-708

DOI:

10.4028/www.scientific.net/MSF.534-536.705

引用:

F. Castro et al., "Processing Routes for Obtaining Novel High Performance Mn-Containing PM Steels ", Materials Science Forum, Vols. 534-536, pp. 705-708, 2007

上线时间:

January 2007

输出:

价格:

$35.00

[1] S. M. Kaufman, Modern developments in Powder Met., 6, 265 (1974).

[2] G. Zapf, G. Hoffmann, K. Dalal, Powder Metallurgy 18, 214 (1975).

[3] S. Banerjee, V. Gemenetzis, F. Thümmler, Powder Metallurgy, 126 (1980).

[4] A. Salak, Powder Metallurgy International 12, 28 (1980).

[5] A. Salak, Powder Metallurgy International 12, 72 (1980).

[6] A. Salak, Modern developments in Powder Met., 13, 183 (1981).

[7] A. N. Klein, R. Oberacker, F. Thümmler, Sintering ´85, Plenum Press, ed by G. C. Kuczynski et. al., 343 (1985).

[8] A. N. Klein, R. Oberacker, F. Thümmler, Powder Metallurgy International 17, 71 (1985).

[9] S. Unami, O. Furukimi, J. of the Japan Society of Powder and Powder Metallurgy 40, 630 (1993).

[10] S. Mocarski, D. W. Hall, R. A. Chernenkoff, D. A. Yaeger, C. O. McHugh, Powder Metallurgy, 39, 130 (1996).

[11] S. C. Mitchell, A. S. Wronski, A. Cias, M. Stoytchev, Advances in Powder Metallurgy and Particulate Materials 2, 129 (1999).

[12] A. Salak, M. Selecka, R. Bures, Powder Metallurgy Progress 1, 41 (2001).

[13] M. Sarasola, T. Gómez-Acebo, F. Castro, Procs. of European Congress on Powder Metallurgy, Nice, France 2001, 266-271.

[14] T. Pieczonka, M. Stoytchev, S. C. Mitchell, Procs. of European Congress on Powder Metallurgy, Nice, France 2001, 316-321.

[15] A. Salak, M. Selecka, L. Parilak, J of Materials Processing Technology, 143-144, 18 (2003).

[16] V. Sinka, M. Selecka, A. Salak, Materials Science Forum 416-418, 455 (2003).

[17] Z. Zhang, R. Sandström, Journal of Alloys and Compounds, 363, 194 (2004).

[18] P. Beiss, Advances in Powder Metallurgy and Particulate Materials, CD in preparation (2005).

[19] E. Dudrova, M. Kabatova, R. Bidulsky, A. S. Wronski, Powder Met., 47, 180 (2004).

[20] A. Salak, M. Selecka, L. Parilak, Procs. of Europen Congress on Powder Metallurgy, Nice, France 2001, 251-256.

[21] M. Gagne, Y. Trudel, Advances in Powder Metallurgy 4, 115 (1991).

[22] A. Salak, The International Journal of Powder Metallurgy & Powder Technology 16, 369 (1980).

[23] S. Unami, S. Uenosono, Kawasaki steel Technical Report Nº 43, 29 (2000).

[24] A. N. Klein, F. Thümmler, R. Oberacker, Metal Powder Report 39, 335 (1984).

为了查看相关信息, 需 Login.