Behaviors of High Explosive near the Critical Conditions for Shock Initiation of Detonation

摘要:

文章预览

The behaviors of the high explosive near the critical conditions for shock initiation of detonation are investigated by high speed photography and pressure measurements in gap tests. The sample is RDX base explosive, and the inner diameter of donor and acceptor charges is 26 mm. Gap material is PMMA. Near the critical condition, the results under the following conditions have been discussed. 1) Shock to detonation transition (SDT) take place in acceptor, 2) The SDT does not occur, but the reaction wave affects the leading shock front in acceptor, and 3) The gap length in which the effect of the reaction wave to shock front almost disappears. These results are very useful to construct the initiation model for solid explosive.

信息:

期刊:

编辑:

S. Itoh and K. Hokamoto

页数:

15-22

引用:

S. Kubota et al., "Behaviors of High Explosive near the Critical Conditions for Shock Initiation of Detonation ", Materials Science Forum, Vol. 566, pp. 15-22, 2008

上线时间:

November 2007

输出:

价格:

$38.00

[1] S. Kubota, Y. Ogata, Y. Wada, T. Saburi, M. Yoshida and K. Nagayama, Thirteenth symposium (International) on Detonation, Norfolk, Va., (2006), in press.

[2] H. Eyring, R. E. Powell, G. H. Duffey, and R. B. Parlin, Chemical Review 45 (1945), p.69.

[3] C. L. Mader, Phys. Fluids 8 (10) (1965), p.1811.

[4] A.W. Campbell, C.W. Davis, J. B. Ramsay, and J.R. Travis: Phys. of Fluids 4 (1961), p.511.

[5] A.W. Campbell, C.W. Davis, and J.R. Travis: Phys. of Fluids 4 (1961), p.498.

[6] I. E. Lindstrom : J. Appl. Phys., 37, (1966), p.4873.

[7] D. Stirpe, J. O. Johnson and J. Wackerle : J. Appl. Phys., 41, (1970), p.3884.

[8] J.B. Ramsay and A. Popolato, Fourth symposium (International) on Detonation, Naval Ordnance Laboratory, ACR-126, Washington, DC, (1965), p.233.

[9] C. L. Mader, Numerical modeling of detonations, Univ. of Calif. Press, (1979), p.396.

[10] B.G. Craig and E.F. Marshall, Fifth symposium (International) on Detonation, (1970), p.321.

[11] J. Wackerle, J.O. Johnson and P.M. Halleck: 6th symposium (International) on Detonation, (1976), p.20.

[12] M. Cowperthwaite and J. T. Rosenberg: 6th symposium (International) on Detonation, (1976), p.793.

[13] E. L. Lee and C. M. Tarver, Phys. Fluids 23 (1980), p.2362.

[14] C. A. Forest, Seventh Symposium (International) on Detonation, Naval Surface Warfare Center NSWC MP82-334, Annapolis, MD, 1981, p.234.D. Stirpe, J. O. Johnson and J. Wackerle : J. Appl. Phys., 41, (1970), p.3884.

[15] J. N. Johnson, P. K. Tang and C. A. Forest, J. Appl. Phys. 57 (1985), p.4323.

[16] R.D. and W. Fickett, The J. Chemical physics, 24 (1956), p.932.

[17] J. W. Kury, H. C. Hornig, E. L. Lee, J. L. McDonnell, D. L. Ornellas, M. Finger, F.M. Strange and M.L. Wilkins, Fourth symposium (International) on Detonation, Naval Ordnance Laboratory, ACR-126, Washington, DC, (1965), p.3.