Characterisation of Low Noise 4H-SiC Avalanche Photodiodes



We report photomultiplication, M, and excess noise, F, measurements at 244nm and 325nm in two 4H-SiC separate absorption and multiplication region avalanche photodiodes (SAM-APDs). Sample A is a 4 x 4 array of 16 SAM-APDs. This structure possesses a relatively thin absorption layer resulting in more mixed injection, and consequently higher noise than sample B. The absorption layer of sample B does not deplete, so 244nm light results in >99% absorption outside the depletion region resulting in very low excess noise. Both structures exhibit very low dark currents and abrupt uniform breakdown at 194V and 624V for samples A and B respectively. Excess noise is treated using a local model [1]. The effective ratio of impact ionisation coefficients (keff) is approximately 0.007, this indicates a significant reduction in the electron impact ionisation coefficient, α, compared to prior work [2-5]. We conclude that the value of α will require modification if thick silicon carbide structures are to fit the local model for multiplication and excess noise.




Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller




J. E. Green et al., "Characterisation of Low Noise 4H-SiC Avalanche Photodiodes", Materials Science Forum, Vols. 645-648, pp. 1081-1084, 2010


April 2010




[1] R. J. McIntyre: IEEE Trans. Electron Devices Vol. ED-13 (1966), p.164.

[2] B. K. Ng, F. Yan, J. P. R. David, R. C. Tozer, G. J. Rees, C. Qin, and J. H. Zhao: IEEE Photon. Technol. Lett. Vol. 14 (2002), p.1342.

[3] X. Guo, A. L. Beck, Z. Huang, N. Duan, J. C. Campbell, D. Emerson, and J. J. Sumakeris: IEEE Trans. Electron Devices Vol. 53 (2006), p.2259.

[4] X. Bai, X. Guo, D. C. Mcintosh, H. -D. Liu, and J. C. Campbell: IEEE Journal of Quantum Electronics Vol. 43 (2007), p.1159.

[5] W. S. Loh, B. K. Ng, J. S. Ng, S. I. Soloviev, H. -Y. Cha, P. M. Sandvik, C. M. Johnson, and J. P. R. David: IEEE Trans. Electron Devices Vol. 55 (2008), p. (1984).

[6] A. O. Konstantinov, N. Nordell, Q. Wahab, and U. Lindefelt: J. Elec. Materials Vol. 27 (1998), p.335.

[7] E. Bellotti, H. -E. Nilsson, K. F. Brennan, P. P. Ruden, and R. Trew: Journal of Applied Physics Vol. 87 (2000), p.3864.

[8] T. Hatakeyama, T. Watanabe, T. Hinohe, K. Kojima, K. Arai, and N. Sano: Applied Physics Letters Vol. 85 (2004), p.1380.

[9] A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Indefelt: Applied Physics Letters Vol. 71 (1997), p.90.

[10] B. K. Ng, J. P. R. David, R. C. Tozer, G. J. Rees, F. Yan, J. H. Zhao, and M. Weiner: IEEE Transactions on Electron Devices Vol. 50 (2003), p.1724.

[11] R. Raghunathan and B. J. Baliga: Sol. State Electron. Vol. 43 (1999), p.199.

[12] M. Razeghi and A. Rogalski: Journal of Applied Physics Vol. 79 (1996), p.7433.

[13] E. Monroy, F. Omnès, and F. Calle: Semicond. Sci. Technol. Vol. 18 (2003), p. R33.

[14] Z. Xu and B. M. Sadler: IEEE Communications Magazine (May 2008), p.67.

[15] B. J. Baliga: Power Semiconductor Devices New York: John Wiley & Sons (1987).

[16] C. E. Weitzel, J. W. Palmor, C. H. Carter, K. Moore, K. K. Nordquist, S. Allen, C. Thero, and M. Bhatnagar: IEEE Transactions on Electron Devices Vol. 43 (1996), p.1732.


[17] R. R. Siergiej: Material Science and Engineering Vol. B61-B62 (1999), p.9.

[18] K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees: Measurement Science & Technology Vol. 17 (2006), p. (1941).

[19] S. G. Sridhara: Journal of Applied Physics Vol. 84 (1998), p.2963.

[20] T. Hatayama, H. Yano, Y. Uraoka, and T. Fuykyi: Microelectronic Engineering Vol. 83 (2006), p.30.