Spin-Blind-Riveting – A New Joining Technology for Hybrid Components



Hybrid components made of metals and fibre reinforced plastics (FRP) need new joining technologies which are suitable for all used materials. At the Technische Universität Chemnitz, Spin-Blind-Riveting (SBR) was developed, a hybrid process which combines blind-riveting, flow drilling and hole moulding. SBR is suitable for FRP, metals and has no need of predrilling. In this paper different material combinations made of aluminium, magnesium and FRP are joint by SBR. Mechanical tests show higher strength than conventional blind-riveting and macro sections show only slight damage to the FRP. It can be said that SBR is a high promising technology to join hybrid components.




Christian Edtmaier and Guillermo Requena




F. Podlesak et al., "Spin-Blind-Riveting – A New Joining Technology for Hybrid Components", Materials Science Forum, Vols. 825-826, pp. 465-472, 2015


July 2015




* - 通讯作者

[1] G. Di Franco, L. Fratini, A. Pasta, Influence of the distance between rivets in self-piercing riveting bonded joints made of carbon fiber panels and AA2024 blanks, Materials and Design 35 (2012) 342-349.

DOI: https://doi.org/10.1016/j.matdes.2011.09.036

[2] V. Fiore, F. Alagna, G. Di Bella, A. Valenza, On the mechanical behavior of BFRP to aluminum AA6086 mixed joints, Composites: Part B 48 (2013) 79-87.

DOI: https://doi.org/10.1016/j.compositesb.2012.12.009

[3] R. Tassone, Fügetechnik für CFK-Bauteile – Anwendungen im Automotivebereich, Composites effizient verarbeiten (2012), Bremen.

[4] W. Georgi, Beitrag zum mechanischen Fügen von Metall-Kunststoff-Mischverbindungen, PhD Thesis (2013), Chemnitz.

[5] Döhler, C., Hälsig, A., Podlesak, F., Czech, A., Nestler, D., Wielage, B., Mayr, P. & Kroll, L.: Energy-Efficient Joining Technologies to Realise Dissimilar Joints of Metal and Fibre-Reinforced Plastics. 3rd ICMC 2014 - International Chemnitz Manufacturing Colloquium (2014).

[6] C. Döhler, A. Hälsig, F. Podlesak: Dissimilar joints between metal- and fibre-reinforced plastics, Symposium Verbundwerkstoffe und Werkstoffverbunde 19 (2013).

[7] K. Schimanski, A. von Hehl, H. -W. Zoch, Failure Behavior of Diffusion Bonded Transition Structures for Integral FRP-Aluminum Compounds, Procedia Materials Science 2 (2013) 189-196.

DOI: https://doi.org/10.1016/j.mspro.2013.02.023

[8] S.T. Amancio-Filho, C. Bueno, J.F. dos Santos, N. Huber, E. Hage Jr., On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures, Materials Science and Engineering A (2011) 3841-3848.

DOI: https://doi.org/10.1016/j.msea.2011.07.017

[9] D. Flock, Wärmeleitungsfügen hybrider Kunststoff-Metall-Verbindungen, PhD Thesis (2011), Aachen.

[10] P.N. Parkes, R. Butler, J. Meyer, A. de Oliveira, Static strength of metal-composite joints with penetrative reinforcement, Composite Structures 118 (2014) 250-256.

DOI: https://doi.org/10.1016/j.compstruct.2014.07.019

[11] C. Ucsnik, M. Scheerer, S. Zaremba, D.H. Pahr, Experimental investigation of a novel hybrid metal–composite joining technology, Composites Part A: Applied Science and Manufacturing 41 (2010) 369-374.

DOI: https://doi.org/10.1016/j.compositesa.2009.11.003

[12] R. Matsuzaki, M. Shibata, A. Todoroki, Improving performance of GFRP/aluminum single lap joints using bolted/co-cured hybrid method, Composites Part A: Applied Science and Manufacturing 39 (2008) 154-163.

DOI: https://doi.org/10.1016/j.compositesa.2007.11.009

[13] W. Hufenbach, R. Gottwald, R. Kupfer, Bolded joints with moulded holes for textile thermoplastic composites 18th International Conference on Composite Materials (2009).

[14] H. Seidlitz, L. Kroll, L. Ulke, Load adjusted joining technology for Composite-Metal Hybrids, Methods of Artificial Intelligence (2009) 51-52.

[15] M. Gude, W. Hufenbach, R. Kupfer, A. Freund, C. Vogel, Development of novel form-locked joints for textile reinforced thermoplastices and metallic components, Journal of Materials Processing Technology 216 (2015) 140-145.

DOI: https://doi.org/10.1016/j.jmatprotec.2014.09.007

[16] C. Gies, Evaluation der Prozesseinflussgrößen beim Fließlochformen mittels DoE, PhD Thesis (2005), Kassel.