Features of Twist Extrusion: Method, Structures & Material Properties

摘要:

文章预览

During the last decade it has been shown that severe plastic deformation (SPD) is a very effective for obtaining ultra-fine grained (UFG) and nanostructured materials. The basic SPD methods are High Pressure Torsion (HPT) and Equal Channel Angular Extrusion (ECAE). Recently several new methods have been developed: 3D deformation, Accumulative Roll Bonding, Constrained Groove Pressing, Repetitive Corrugation and Straightening, Twist Extrusion (TE), etc. In this paper the twist extrusion method is analyzed in terms of SPD processing and the essential features from the “scientific” and “technological” viewpoint are compared with other SPD techniques. Results for commercial, 99.9 wt.% purity, copper processed by TE are reported to show the effectiveness of the method. UFG structure with an average grain size of ~0.3 μm was produced in Cu billets by TE processing. The mechanical properties in copper billets are near their saturation after two TE passes through a 60º die. Subsequent processing improves homogeneity and eliminates anisotropy. The homogeneity of strength for Cu after TE is lower than after ECAE by route BC, but higher than after ECAE by route C. The homogeneity in ductility characteristics was of almost of inverse character. The comparison of mechanical properties inhomogeneity in Cu after TE and ECAE suggests that alternate processing by ECAE and TE should give the most uniform properties.

信息:

期刊:

编辑:

Witold Lojkowski and John R. Blizzard

页数:

69-78

引用:

Y. Beygelzimer et al., "Features of Twist Extrusion: Method, Structures & Material Properties", Solid State Phenomena, Vol. 114, pp. 69-78, 2006

上线时间:

July 2006

输出:

价格:

$41.00

[1] R.Z. Valiev: Nature Materials, Vol. 3 (2004), p.511.

[2] Ultrafine Grained Materials III. Ed. by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe. TMS (The Minerals, Metals & Materials Society) (2004).

[3] M.J. Zehetbauer, H.P. Stuwe, A. Vorhauer, E. Schafler and J. Kohout: Nanomaterials by severe plastic deformation. Edited by Zehetbauer MJ, Valiev RZ; Weinheim, Germany: Wiley-VCH; (2004) pp.435-446.

DOI: https://doi.org/10.1002/3527602461.ch8a

[4] T.C. Lowe: Materials Science Forum, Vol. 503-504 (2006) pp.355-362.

[5] Beygelzimer Y., Orlov D. and Varyukhin V.: Ultrafine Grained Materials II; Ed. By Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe. TMS (The Minerals, Metals & Materials Society) (2002). p.297.

DOI: https://doi.org/10.1002/9781118804537

[6] Y. Beygelzimer, V. Varyukhin, D. Orlov, S. Synkov: Twist extrusion - process for strain accumulation (Donetsk: TEAN 2003) [In Russian].

[7] Y. Beygelzimer: Mechanics of Materials V. 37 (2005), P. 753.

[8] D. Orlov, A. Reshetov, A. Synkov, V. Varyukhin, D. Lotsko, O. Sirko, N. Zakharova, A. Sharovsky, V. Voropaiev, Yu. Milman and S. Synkov: Y.T. Zhu and V. Varyukhin (eds. ), Nanostructured materials by high pressure severe plastic deformation, NATO Science Series, II Mathematics, Physics and Chemistry - V. 212 (2006).

DOI: https://doi.org/10.1007/1-4020-3923-9_10

[9] Beygelzimer Y., Varyukhin V., Orlov D., Efros B., Stolyarov V. and Salimgareyev H.: Ultrafine Grained Materials II. Ed. By Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe; TMS (The Minerals, Metals & Materials Society) (2002).

DOI: https://doi.org/10.1002/9781118804537.ch5

[10] D.V. Orlov, V.V. Stolyarov, H. Sh. Salimgareyev, E.P. Soshnikova, A.V. Reshetov, Ya. Ye. Beygelzimer, S.G. Synkov and V.N. Varyukhin: Ultrafine Grained Materials III. Ed. by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe; TMS (The Minerals, Metals & Materials Society) (2004).

DOI: https://doi.org/10.1002/9781118804537.ch5

[11] V.V. Stolyarov, Ya.E. Beigel'zimer, D.V. Orlov, and R.Z. Valiev: The Physics of Metals and Metallography, Vol. 99 (2005), No. 2, p.204.

[12] Y. Beygelzimer, V. Varyukhin, D. Orlov, S. Synkov, A. Spuskanyuk, Y. Pashinska: Nanomaterials by severe plastic deformation. Ed. by Zehetbauer MJ, Valiev RZ; Weinheim, Germany: Wiley-VCH; (2004), p.511.

DOI: https://doi.org/10.1002/3527602461.ch9e

[13] Beygelzimer Y., Orlov D.: Defect and Diffusion Forum, V. 208-209 (2002), p.311.

[14] V. Varyukhin, Y. Beygelzimer, S. Synkov and D. Orlov: Materials Science Forum, Vol. 503504 (2005), p.335.

[15] A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov, P.N. Nizovtsev: Y.T. Zhu and V. Varyukhin (eds. ), Nanostructured materials by high pressure severe plastic deformation, NATO Science Series, II Mathematics, Physics and Chemistry - V. 212 (2006).

DOI: https://doi.org/10.1007/1-4020-3923-9_35

[16] A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov and V.P. Soloviev: Reviews in Advanced Materials Science, Vol. 10 (2005), No. 3 p.235.

[17] A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov, V.P. Solovyov: Materials Science Forum, Vol. 503-504 (2005), p.693.

[18] I.P. Semenova, L.A. Saitova, G.I. Raab, A.I. Korshunov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev: Materials Science Forum, Vol. 503-504 (2005), p.757.

[19] V.M. Segal: Materials Science and Engineering A, Vol. 271 (1999), p.322.

[20] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Materialia, Vol. 35 (1996), No. 2 p.143.