Hydrothermal Synthesis of Fe3O4@C Spheres as Anode Material for Lithium-Ion Batteries

摘要:

文章预览

Fe3O4@C spheres were synthesized by hydrothermal reaction at 190°C followed by a low temperature heat annealing at 600 °C and applied as an anode material for lithium-ion batteries. The samples were characterized by XRD and SEM. The electrochemical performances of as-synthesized Fe3O4@C were systemically investigated. A reversible capacity of 873 mAh g-1 is obtained in the second cycle at 400 mA g-1. More importantly, the discharge specific capacity can still maintain at about 767 mAh g-1 after 80 cycles. Moreover, Fe3O4@C spheres electrode shows satisfactory rate capability even at a rate up to 2000 mA g-1. Thus, the results demonstrate that Fe3O4@C spheres show encouraging application potential to be an advanced anode material for lithium storage

信息:

期刊:

编辑:

Wei Pan and Jianghong Gong

页数:

801-806

引用:

L. Li et al., "Hydrothermal Synthesis of Fe3O4@C Spheres as Anode Material for Lithium-Ion Batteries", Solid State Phenomena, Vol. 281, pp. 801-806, 2018

上线时间:

August 2018

输出:

价格:

$38.00

* - 通讯作者

[1] M. Armand, J. M. Tarascon, Building better batteries, Nature 451 (2008) 652-657.

[2] Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z.D. Deng, J. Xiao, Lithium and lithium ion batteries for applications in microelectronic devices: a review, J. Power Sources 286 (2015) 330-345.

DOI: https://doi.org/10.1016/j.jpowsour.2015.03.164

[3] C.S. Kim, Y.H. Cho, K.S. Park, S.K. Jeong, Y.S. Kim, Electrochemical Properties of Carbon-Coated NbO2 as a Negative Electrode for Lithium-Ion Batteries, Key Eng. Mater. 724 (2017) 87-91.

DOI: https://doi.org/10.4028/www.scientific.net/kem.724.87

[4] C. Wang, G. Shao, Z. Ma, S. Liu, W. Song, J. Song, Constructing Fe3O4@N-rich carbon core-shell microspheres as anode for lithium ion batteries with enhanced electrochemical performance, Electrochim. Acta 130 (2014) 679-688.

DOI: https://doi.org/10.1016/j.electacta.2014.03.093

[5] X.Y. Liu, Y.L. Han, Q. Li, D. Pan, SnO2 Nanoparticles for lithium-ion batteries prepared by sol-gel method, Key Eng. Mater. 727 (2017) 718-725.

DOI: https://doi.org/10.4028/www.scientific.net/kem.727.718

[6] C.L. Ma, J. Shi, Y. Zhao, N.J. Song, Y.X. Wang, A novel porous reduced microcrystalline graphene oxide supported Fe3O4@C nanoparticle composite as anode material with excellent lithium storage performances, Chem. Eng. J. 326 (2017) 507-517.

DOI: https://doi.org/10.1016/j.cej.2017.05.180

[7] W. Deng, S.Q. Ci, H. Li, Z.H. Wen, One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries, Chem. Eng. J. 330 (2017) 995-1001.

DOI: https://doi.org/10.1016/j.cej.2017.08.039

[8] W. Qi, X. Li, H. Li, W.K. Wu, P. Li, Y. Wu, C.J. Kuang, S.X. Zhou, X.L. Li, Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes, Nano Res. 10 (2017).

DOI: https://doi.org/10.1007/s12274-017-1502-x

[9] S.H. Lee, S.H. Yu, J.E. Lee, A. Jin, D.J. Lee, N. Lee, H. Jo, K. Shin, T.Y. Ahn, Y.W. Kim, H. Choe, Y.E. Sung, T. Hyeon, Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement, Nano Lett. 13 (2013).

DOI: https://doi.org/10.1021/nl401952h

[10] Q. Zhou, Z.B. Zhao, Z.Y. Wang, Y.F. Dong, X.Z. Wang, Y. Gogotsi, J.S. Qiu, Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage, Nanoscale 6 (2014) 2286-2291.

DOI: https://doi.org/10.1039/c3nr05423c

[11] S.H. Lee, S.H. Yu, J.E. Lee, A.H. Jin, D.J. Lee, N. Lee, H. Jo, K. Shin, T.Y. Ahn, Y.W. Kim, H.Choe, Y.E. Sung, T. Hyeon, Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement, Nano Lett. 13 (2013).

DOI: https://doi.org/10.1021/nl401952h

[12] Zhao Yang, Danyang Su, Jinping Yang, Jing Wang, Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries, J. Power Sources 363 (2017) 161-167.

DOI: https://doi.org/10.1016/j.jpowsour.2017.07.080

[13] Y.T Ma, J. Huang, L. Lin, Q.H. Xie, M.Y. Yan, B.H. Qu, L.S. Wang, L.Q. Mai, D.L. Peng, Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability, J. Power Sources 365 (2017).

DOI: https://doi.org/10.1016/j.jpowsour.2017.08.054

[14] H.L. Luo, D.H. Ji, Z.W. Yang, Y. Huang, G.Y. Xiong, Y. Zhu, R.S. Guo, Y.Z. Wan, An ultralight and highly compressible anode for Li-ion batteries constructed from nitrogen-doped carbon enwrapped Fe3O4 nanoparticles confined in a porous 3D nitrogen-doped graphene network, Chem. Eng. J. 326 (2017).

DOI: https://doi.org/10.1016/j.cej.2017.05.102