通过作者查论文: Lian Jun Wang

文章题目页数

作者: Zhi Xiong, Wan Jiang, Lian Jun Wang, Ying Shi
摘要: Fatigue behaviors of conventional alumina ceramics in cyclic loading with hemisphere and cylinder punches are investigated with modified small punch (MSP) tests. Residual strengths are used to quantify the degree of fatigue damage. The dependences of the residual MSP strength on loading mode, cyclic loading magnitude, frequency, and puncher shape have been discussed in detail. Fatigue behavior studies could be very convenient and effective because MSP tests could perform the cyclic loading and then evaluate the residual strength consistently and effectively.
2426
作者: Chao Qin, Lian Jun Wang, Sheng Qiang Bai, Wan Jiang, Li Dong Chen
摘要: Ti5Si3-TiC-Ti3SiC2 composites containing different Ti3SiC2 volume fractions from 0 to 50% were in-situ fabricated by spark plasma sintering using Ti and SiC powders through adjusting the molar ratio of Ti to SiC. The morphologies of the fracture surfaces were analyzed by scanning electron microscopy (SEM). The room temperature mechanical properties of composites including hardness, bending strength and fracture toughness were tested.
1383
作者: Lian Jun Wang, Wan Jiang, Sheng Qiang Bai, Li Dong Chen
摘要: In-situ toughened TiC-Ti5Si3 composites were fabricated using reactive sintering of Ti and SiC via spark plasma sintering (SPS). The focus of this work on the content of TiC in final composites was different. The phase constituents and microstructures of the samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Fracture toughness at room temperature was also measured by indentation tests. The results showed that the corporation of TiC greatly enhances the fracture toughness of TiC-Ti5Si3 composites.
1885
作者: Jian Feng Zhang, Lian Jun Wang, Wan Jiang, Li Dong Chen
摘要: Ti3SiC2/20vol%SiC composite was synthesized by spark plasma sintering (SPS) under a pressure of 50MPa at 1350°C using Ti, Si and C as starting powders. The phase constituents and microstructures of the composite were investigated. X-ray diffraction (XRD) results demonstrated that Ti reacted with C to form TiC firstly, then TiSi2 formed from Ti and Si. The formation of Ti3SiC2 might come from two reactions. One was that TiSi2, Ti and TiC reacted directly to form monolithic Ti3SiC2. The other one was that TiSi2, Ti and C reacted to form Ti3SiC2 and SiC. The EPMA results showed that the main phases were Ti3SiC2 and SiC with a minor content of TiC as impurity. TiC particles less than 1μm in diameter distributed in SiC phase.
1368
显示4个文章标题中的1到4个